Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19049-19054    https://doi.org/10.11896/cldb.20060216
  无机非金属及其复合材料 |
热电器件各界面优化方法研究综述
石峰, 邹佳朴, 吴子华, 谢华清, 王元元
上海第二工业大学能源与材料学院,上海 201209
Interface Optimization of Thermoelectric Device—a Review
SHI Feng, ZOU Jiapu, WU Zihua, XIE Huaqing, WANG Yuanyuan
School of Energy and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
下载:  全 文 ( PDF ) ( 3229KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电技术的发展及热电器件的广泛应用吸引了世界各国研究人员的目光。热电器件的结构分析及其导电、传热性能优化是提升热电器件转化效率的有效途径之一。本文主要介绍了Bi2Te3热电器件的陶瓷基板、金属电极、过渡层以及热电臂界面对热电器件内部的导电、传热性能的影响。综合目前已有研究,阐明了热电器件在实际设计及使用过程中,各个界面以及连接界面存在的问题和已有的解决方法,分析了热电器件在设计、优化过程中存在的不足。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石峰
邹佳朴
吴子华
谢华清
王元元
关键词:  碲化铋  热电器件  过渡层材料  热电臂  界面优化    
Abstract: The widespread application of thermoelectric technology and devices have attracted the attention of researchers all over the world. One of the effective ways to improve the conversion efficiency of thermoelectric devices is to optimize its ability of conductivity and heat transfer through analyzing the structure. This paper indicated the influence of interfaces such as ceramic substrate, metal electrode, interface layer and thermoelectric leg on the internal conductivity and heat transfer performance of Bi2Te3 thermoelectric device. This paper illustrated the problems and rela-ted solutions of both interface and connection interface in the practical design and application of the thermoelectric devices. In addition, the shor-tage in the design and optimization of thermoelectric devices are presented in this study.
Key words:  Bi2Te3    thermoelectric device    interface layer    thermoelectric leg    interface optimization
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TK11+5  
基金资助: 国家自然科学基金(51590902;51676117;51876111);曙光计划(18SG54);研究生项目基金(EGD19YJ0030)
通讯作者:  wuzihua@sspu.edu.cn   
作者简介:  石峰,上海第二工业大学环境工程专业硕士研究生,在吴子华教授的指导下进行研究。目前主要研究领域为热电器件。
吴子华,上海第二工业大学教授,硕士研究生导师,博士毕业于中科院上海硅酸盐研究所材料物理与化学专业。主要研究方向为新能源材料和器件设计与制备。主持国家自然科学基金青年基金、面上项目、上海市曙光计划、上海市教委创新基金等项目多项。在Applied Physics Letter,Journal of Applied Physics等国内外期刊发表 SCI 论文 50 余篇,申请发明专利 20 余项,其中授权发明专利 12 项,授权实用新型 2 项。
引用本文:    
石峰, 邹佳朴, 吴子华, 谢华清, 王元元. 热电器件各界面优化方法研究综述[J]. 材料导报, 2021, 35(19): 19049-19054.
SHI Feng, ZOU Jiapu, WU Zihua, XIE Huaqing, WANG Yuanyuan. Interface Optimization of Thermoelectric Device—a Review. Materials Reports, 2021, 35(19): 19049-19054.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060216  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19049
1 Gao D, Ren G P, Li Q F, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(9), 269(in Chinese).
高迪, 任庚坡, 李琦芬, 等. 重庆大学学报(自然科学), 2021, 35(9), 269.
2 Fan L, Zhang G, Wang R, et al. Energy Conversion & Management, 2016, 122, 85.
3 Khan M Q,Malarmannan S,Manikandaraja G. Iop Conference, 2018, 402, 1.
4 Ghilvacs M, Prisecaru T, Pop H, et al. Iop Conference, 2016, 147(1), 012147.
5 Liu K, Ding T, Li J, et al. Advanced Energy Materials, 2018, 8(13), 1702481.
6 Zhang Y, Gurzadyan G G, Umair M M, et al. Chemical Engineering Journal, 2018, 344, 402.
7 Nader W B. Applied Thermal Engineering, 2019, 167, 114761.
8 Bahk J H, Fang H, Yazawa K, et al. Journal of Materials Chemistry C, 2015, 3(40), 10362.
9 Kim C S, Lee G S, Choi H, et al. Applied Energy, 2018, 214, 131.
10 Bell L E. Science, 2008, 321, 1457.
11 Xu D S. Semiconductor refrigeration and application technology, Shanghai Jiaotong University Press, China, 1999(in Chinese).
徐德胜. 半导体制冷与应用技术,上海交通大学出版社,1999.
12 El-Genk M S, Saber H H. Energ Convers Manage, 2003, 44, 1069.
13 Hu X, Jood P, Ohta M, et al. Energy & Environmental science, 2016, 9(2), 517.
14 Rezania A, Rosendahl L A. Journal of Electronic Materials, 2012, 41(6), 1343.
15 Shimizu K, Takase Y, Takeda M. Journal of Electronic Materials, 2009, 38(7), 1371.
16 Swamy K,Satyanarayan. Materials Today: Proceedings,2020,35(1),1.
17 Xuan X C,Ng K C,Yap C,et al. International Journal of Heat & Mass Transfer,2002,45(26), 5159.
18 Mao J H,Wu Z H,Xie H Q,et al. Journal of Thermophysics and Heat Transfer,2018, 1.
19 Sakamoto T, Iida T, Sekiguchi T, et al. Journal of Electronic Materials, 2014, 43(10), 3792.
20 Börner F D, Schreier M, Feng B, et al. Journal of Materials Research, 2014, 29(16), 1771.
21 Suarez F, Nozariasbmarz A, Vashaee D, et al. Energy & Environmental Science, 2016, 9(6), 2099.
22 Zhang Q H, Huang X Y, Bai S Q, et al. Advanced Engineering Mate-rials, 2016, 18(2), 194.
23 Tan M, Deng Y, Hao Y. Energy, 2014, 77, 591.
24 Pham N H, Farahi N, Kamila H, et al. Materials Today Energy, 2019, 11, 97.
25 Zhou H, Mu X, Zhao W, et al. Nano Energy, 2017, 40, 274.
26 Liu W, Jie Q, Kim H S, et al. Acta Materialia, 2015, 87, 357.
27 Shen J, Wang Z, Chu J, et al. ACS Applied Materials & Interfaces, 2019, 14182.
28 Hu X K, Zhang S M, Zhao F, et al. Journal of Inorganic Materials, 2019,34(3), 269(in Chinese).
胡晓凯, 张双猛, 赵府, 等. 无机材料学报,2019,34(3), 269.
29 Rowe D M. Thermoelectrics handbook: macro to nano, CRC Press, America, 2005.
30 Zhao D, Tian C, Tang S, et al. Materials Science in Semiconductor Processing, 2010, 13(3), 221.
31 Wang L, Lu X, Yu X, et al. Heat Transfer Research, 2019, 51(3), 1.
32 Lin T Y, Liao C N, Wu A T. Journal of Electronic Materials, 2012, 41(1), 153.
33 Li J, Zhao S, Chen J, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18562.
34 Yusufu E, Sugahara T, Okajima M, et al. Journal of Alloys and Compounds, 2020, 817, 1.
35 Song B, Lee S, Cho S, et al. Journal of Alloys & Compounds, 2014, 617, 160.
36 Abbas M S, Thanh H L, Van N N. Materials Today: Proceedings, 2019, 8, 625.
37 Kunioka H, Obara H, Yamamoto A, et al. Materials Transactions, 2018, 59(7), 1035.
38 Gu M, Xia X G, Huang X Y, et al. Journal of Alloys & Compounds, 2014, 610, 665.
39 Chen L, Mei D, Wang Y, et al. Journal of Alloys and Compounds, 2019, 796, 314.
40 Lan Y C, Wang D Z, Chen G, et al. Applied Physics Letters, 2008, 92(10), 101910.
41 Hsieh H C, Wang C H, Lan T W, et al. Materials Chemistry and Phy-sics, 2020, 246, 122848.
42 Fan J, Chen L, Bai S, et al. Materials Letters, 2004, 58(30), 3876.
43 Chen S W, Chu A H, Wong D S H, et al. Journal of Alloys & Compounds. 2017, 699, 448.
44 Chen L D, Liu R H, Shi X. Thermoelectric materials and devices, Science Press, China, 2017.
45 Ebling D, Bartholomé K, Bartel M, et al. Journal of Electronic Mate-rials, 2010, 39(9), 1376.
46 Kumar S, Heister S D, Xu X, et al. Journal of Electronic Materials, 2015, 44(10), 3627.
47 Zhang Q, Liao J, Tang Y, et al. Energy & Environmental Science, 2017, 10(4), 956.
48 Lavric E D. Sensitivity analysis of thermoelectric module performance with respect to geometry, 2010, 21, 133.
49 Wu Y, Yang J, Chen S, et al. Energy, 2018, 147, 672.
50 Yee S K, Leblanc S, Goodson K E, et al. Energy & Environment Science, 2013, 6(9), 2561.
51 Meng J H, Zhang X X, Wang X D. Energy, 2014, 71, 367.
52 Shittu S, Li G Q, Zhao X D, Ma X L. Applied Energy, 2020, 268,115075.
53 Lamba R, Kaushik S C, Tyagi S K, et al. Thermal Science and Enginee-ring Progress, 2018, 6, 236.
54 Li G Q, Shittu S, Ma X L, et al. Energy, 2019, 171, 599.
55 Siddique A R M, Mahmud S, Heyst B V. Energy,2020, 19, 6.
56 Zebarjadi M. Scientific Reports, 2016, 6, 20951.
57 Lv S, Liu M H, He W, et al. Energy Conversion and Management, 2020, 207, 112516.
[1] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed