Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 21010082-6    https://doi.org/10.11896/cldb.21010082
  无机非金属及其复合材料 |
基于MATLAB的混凝土裂缝宽度计算方法研究
刘娟红1,2,3, 孟翔1, 段品佳4, 马焜1
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
3 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
4 中海石油气电集团有限责任公司,北京 100028
Study on Calculation Method of Concrete Crack Width Based on MATLAB
LIU Juanhong1,2,3, MENG Xiang1, DUAN Pinjia4, MA Kun1
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Key Laboratory of the Ministry of Metal Mining and Safety Education, University of Science and Technology Beijing, Beijing 100083, China
4 China National Offshore Oil and Gas Group Co., Ltd., Beijing 100028, China
下载:  全 文 ( PDF ) ( 10235KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究基于MATLAB软件,提出了两种混凝土裂缝宽度计算方法;对具有初始损伤的混凝土试样裂缝以及清水浸泡7 d后的试样裂缝进行形态提取,在图像灰度化、二值化、裂缝定位及形态学处理后,运用裂缝周长与面积间的关系进行整条裂缝的宽度平均值计算,得出结果后导出数据。结果表明,通过裂缝周长与面积间关系计算裂缝平均宽度的方法比基于连通域最小外界矩形向y轴方向遍历求平均宽度的方法更为精确;使用MATLAB进行图像处理得到的裂缝宽度与人工检测得到的裂缝宽度值基本一致,偏差率在0%~12%,且效率和精确度更高;在千万像素级别的精度下,本研究可以实现对混凝土裂缝的形貌及宽度数据更高精度、高效率地采集,提高科研工作者在混凝土裂缝研究方面的工作效率。同时,本研究可用于桥梁、高楼或存在安全隐患的混凝土建筑的裂缝测量,通过无人机、机器人、机械臂等智能化和自动化的设备进行裂缝图像采集,再使用数字图像处理技术实现对裂缝的识别、特征的提取和测量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘娟红
孟翔
段品佳
马焜
关键词:  混凝土  裂缝宽度  图像处理  MATLAB    
Abstract: This study was based on MATLAB software, presenting two kinds of calculating methods of concrete crack width; the crack morphology of the concrete sample with initial damage and the sample soaked in water for 7 days was extracted. After image grayscale, binarization, crack location and morphological treatment, the average width of the whole crack was calculated by using the relationship between the crack peri-meter and area. After the results are obtained, the data is exported. The results show that the method to calculate the average crack width by the relationship between the crack perimeter and the crack area is more accurate than the method to calculate the average crack width by traversing the minimum external rectangle in the direction of y axis. The crack width obtained by MATLAB image processing is basically the same as the crack width obtained by manual detection. The error rate is between 0% and 12%, and the efficiency and accuracy are higher. With the precision of ten million pixels, this study can realize the acquisition of the morphology and width data of concrete cracks with higher accuracy and higher efficiency, and improve the work efficiency of researchers in the research of concrete cracks. At the same time, this study can be used for crack measu-rement of bridges, high-rise buildings or concrete buildings with potential safety hazards. Intelligent and automatic equipment such as unmanned aerial vehicles, robots and robotic arms can be used for crack image acquisition, and the digital image processing technology can be used to realize crack identification, feature extraction and measurement.
Key words:  concrete    crack width    image processing    MATLAB
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TU528  
基金资助: 中央高校基本科研业务费(FRF-BD-20-01B);国家自然科学基金(51678049) ;国家重点研发计划(2016YFC0600803)
通讯作者:  juanhong1966@ hotmail.com   
作者简介:  刘娟红,北京科技大学土木与资源工程学院教授,博士研究生导师。长期从事现代混凝土技术教学与研究工作。主持国家自然科学重点基金、面上基金、国家重点基础研究发展计划、省部级科技计划项目和横向科研课题等60余项。获省部级科技进步一等奖2项、二等奖1项、三等奖4项。获国家发明专利20余项。在公开刊物上发表文章160余篇,被SCI、EI收录60余篇。出版学术专著《绿色高性能混凝土技术与工程应用》《活性粉末混凝土》《固体废弃物与低碳混凝土》等。主编教材《土木工程材料》。主要科研成果应用于北京市奥运工程地铁工程混凝土裂缝控制,广东省、浙江省道路桥梁工程,新疆、宁夏等自治区重点工程,大唐国际发电有限公司粉煤灰品质提升等方面。
引用本文:    
刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
LIU Juanhong, MENG Xiang, DUAN Pinjia, MA Kun. Study on Calculation Method of Concrete Crack Width Based on MATLAB. Materials Reports, 2022, 36(6): 21010082-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010082  或          http://www.mater-rep.com/CN/Y2022/V36/I6/21010082
1 He S H, Zhao X M, Ma J, et al. China Journal of Highway and Transport, 2017,30(11),63(in Chinese).
贺拴海,赵祥模,马建,等.中国公路学报, 2017,30(11),63.
2 Xu X J, Zhang X N. Journal of Hunan University (Natural Sciences), 2013,40(7),34(in Chinese).
许薛军,张肖宁. 湖南大学学报(自然科学版), 2013,40(7),34.
3 Zhou Y, Liu T.Journal of Tongji University(Natural Science),2019,47(9),1277(in Chinese).
周颖,刘彤.同济大学学报(自然科学版),2019,47(9),1277.
4 Fang Z, Xia J, Liu C L.Journal of Railway Science and Engineering, 2016,13(12),2447(in Chinese).
方志,夏军,刘传乐. 铁道科学与工程学报, 2016,13(12),2447.
5 Cheng S, Jin N G, Tian Y, et al. Journal of Zhejiang University(Engineering Science), 2011,45(6),1062(in Chinese).
成盛,金南国,田野,等. 浙江大学学报(工学版),2011,45(6),1062.
6 Zuo Y, Wang G, Zuo C. In: International Conference on Computational Intelligence and Security. Suzhou, 2008, pp. 481.
7 Satoshi Nishiyama, Nao Minakata, Teruyuki Kikuchi, et al.Advanced Engineering Informatics, 2015,29(4),851.
8 Fang Z, Peng H T. Journal of Hunan University(Natural Sciences),2012,39(1),7(in Chinese).
方志,彭海涛.湖南大学学报(自然科学版),2012,39(1),7.
9 Li G, He S, Ju Y, et al.Automation in Construction, 2014,41,83.
10 Alam S Y, Saliba J, Loukili A.Construction and Building Materials, 2014,69,232.
11 Zhang L, Yang F, Zhang Y D, et al.In: 2016 IEEE International Confe-rence on Image Processing (ICIP). Phoenix, 2016, pp. 3708.
12 Wang S, Wu X, Zhang Y H, et al. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5), 859(in Chinese).
王森,伍星,张印辉,等.计算机辅助设计与图形学学报, 2018, 30(5), 859.
13 Han X J, Zhao Z C. Journal of Building Structures, 2018,39(S1),418(in Chinese).
韩晓健,赵志成.建筑结构学报,2018,39(S1),418.
14 Zhang Y, Yang X, Hao Z H, et al.Materials Reports A:Review Papers, 2020,34(12),23088(in Chinese).
赵毅,杨旋,郝增恒,等.材料导报:综述篇,2020,34(12),23088.
15 Li P, Li Q, Ma W M, et al. Computer Engineering and Design, 2020,41(11),3143(in Chinese).
李鹏,李强,马味敏,等.计算机工程与设计,2020,41(11),3143.
[1] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[2] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[3] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[4] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[5] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[6] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[7] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[8] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[9] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[10] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[11] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[12] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[13] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[14] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[15] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed