Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20120078-7    https://doi.org/10.11896/cldb.20120078
  无机非金属及其复合材料 |
HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响
崔天龙1, 王里1,2, 马国伟1,2, 李之建1, 白明科3
1 河北工业大学土木与交通学院, 天津 300401
2 天津市装配式建筑与智能建造重点实验室,天津 300401
3 尧柏特种水泥技术研发有限公司, 西安 710100
Effect of HB-CSA and Expansion Agent on Shrinkage and Cracking Performance of 3D Printing Concrete
CUI Tianlong1, WANG Li1,2, MA Guowei1,2, LI Zhijian1, BAI Mingke3
1 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401,China
2 Tianjin Key Laboratory of Prefabricated Building and Intelligent Construction,Tianjin 300401,China
3 Yaobai Special Cement Technology R & D Co., Ltd., Xi'an 710100,China
下载:  全 文 ( PDF ) ( 11286KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 3D打印材料因连续挤出的工艺要求,受限于喷嘴的尺寸,制备时一般使用细骨料。细骨料比表面积大,包裹骨料所需浆体多,造成胶凝材料占比高;无模逐层堆积建造的固有流程,提高了打印材料的水分蒸发速率,导致3D打印水泥基复合材料具有较高的收缩和开裂风险。为此,通过复掺高贝利特硫铝酸盐水泥(HB-CSA)和UEA膨胀剂制备低收缩3D打印水泥基复合材料,测试评估其可打印性、力学性能和收缩开裂性能。结果表明,单掺5%(质量分数,下同)的HB-CSA时,3D打印水泥基复合材料90 d的收缩率可降低约8%,早期开裂面积下降约35%,且流动度为190 mm,初凝时间为45 min,满足3D打印挤出工艺要求;5%的HB-CSA和10%的UEA膨胀剂复掺时,所制备材料90 d的收缩率可降低约30%,早期开裂面积下降约33%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔天龙
王里
马国伟
李之建
白明科
关键词:  3D打印混凝土  可打印性  收缩开裂  高贝利特硫铝酸盐水泥  UEA膨胀剂    
Abstract: Limited by the requirements of continuous extrusion process and the size of nozzle, 3D printing materials are usually fine aggregate compo-sites. Due to the large specific surface area of fine aggregate, printing composites need more slurry to wrap the aggregate, resulting in a high proportion of cementitious materials. The inherent layer-upon-layer stacking process improve the water evaporation rate of printing materials, leading to high shrinkage and cracking risks. 3D printing cement-based composites were prepared by mixing high Belite sulphoaluminate cement (HB-CSA) and UEA expansive agent, and the printability, mechanical properties and shrinkage cracking properties were experimentally tested and evaluated. The results show that the 90 d shrinkage rate and early cracking area of the prepared material can be reduced by 8% and 35% respectively when 5% HB-CSA is adopted. The flowability of the prepared material is 190 mm, and the initial setting time is 45 min, which can meets the requirements of 3D printing extrusion process; when 5% HB-CSA and 10% UEA expansion agent are mixed, the 90 d shrinkage rate and early cracking area of the prepared material can be reduced by 30% and 33% respectively.
Key words:  3D printing concrete    printability    shrinkage cracking    high Belite sulphoaluminate cement    UEA expansion agent
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TU502  
基金资助: 国家自然科学基金项目(51808183;51878241);天津市自然科学基金项目(20JCYBJC00710);河北省自然科学基金优秀青年基金项目(E2021202039)
通讯作者:  wangl1@hebut.edu.cn20120078-1   
作者简介:  崔天龙,河北工业大学土木与交通学院硕士研究生,主要研究方向为3D打印混凝土和特种水泥材料。王里,副教授,博士生导师,河北工业大学元光学者。澳大利亚The University of Western Australia访问学者,CCPA-3D打印分会委员,CCPA自防护混凝土材料与工程技术分会专家委员,CECS建筑机器人委员会专家委员。主要从事建筑3D打印材料与结构基础研究与创新应用,目前主持国家自然科学基金项目3项,主持河北省重点研发计划、河北省优秀青年科学基金、天津市自然科学基金等10余项科研项目。
引用本文:    
崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
CUI Tianlong, WANG Li, MA Guowei, LI Zhijian, BAI Mingke. Effect of HB-CSA and Expansion Agent on Shrinkage and Cracking Performance of 3D Printing Concrete. Materials Reports, 2022, 36(2): 20120078-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120078  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20120078
1 Noura K, Georges A, Khadija E C, et al. Construction and Building Materials, 2017, 157, 382.
2 Ma G W, Li Z J, Wang L. Construction and Building Materials, 2018, 162, 613.
3 Li Z J, Wang L, Ma G W, et al. Construction and Building Materials, 2020, 264,120196.
4 Lin X Q, Zhang T, Huo L, et al. Concrete, 2016(6),141 (in Chinese).
蔺喜强, 张涛, 霍亮, 等.混凝土, 2016(6), 141.
5 Zhang J C, Wang J L, Dong S F, et al. Composites Part A, 2019, 125,105533.
6 Moelich G M, Kruger J, Combrinck R. Composites Part B, 2020, 200,108313.
7 Xiang B F. Study on the hydration and harding mechanism of high belite calcuim sulfoaluminate cement . Master's Thesis,Beijing University of Technology,China, 2017 (in Chinese).
项斌峰. 快凝快硬高贝利特硫铝酸盐水泥水化硬化机理研究. 硕士学位论文, 北京工业大学, 2017.
8 Li J. Study on high belite-sulphoaluminate cement. P.D. Thesis, Wuhan University of Technology, China, 2013 (in Chinese).
李娟. 高贝利特硫铝酸盐水泥的研究. 博士学位论文, 武汉理工大学, 2013.
9 Li F, Zhan B G. Journal of Hefei University of Technology(Natural Science), 2016, 39(9), 1254 (in Chinese).
李飞, 詹炳根. 合肥工业大学学报(自然科学版), 2016, 39(9), 1254.
10 Gao S L, Wang Z, Wang W C, et al. Construction and Building Mate-rials, 2018, 179,172.
11 Pan Z F, Zhu Y Z, Zhang D F, et al. Construction and Building Mate-rials, 2020, 259, 119768.
12 Shen P L, Lu L N, He Y J, et al. Cement and Concrete Composites, 2020, 105,103425.
13 Luosun Y M. Studies and controls on shrinkage of sulfoaluminate cement concrete . Master's Thesis, Tsinghua Univeisity,China, 2015 (in Chinese).
罗孙一鸣. 硫铝酸盐水泥混凝土早期收缩及调控研究 . 硕士学位论文, 清华大学, 2015.
14 Feng J J, Miao M, Yan P Y. Journal of Building Materials, 2012, 15(4),439 (in Chinese).
冯竟竟, 苗苗, 阎培渝. 建筑材料学报, 2012, 15(4),439.
15 Zhu C H, Li X T, Wang B J, et al. Journal of Building Materials, 2015, 18(6), 1033 (in Chinese).
朱长华, 李享涛, 王保江, 等. 建筑材料学报, 2015, 18(6), 1033.
[1] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[2] 唐芮枫, 王子明, 何欢, 张琳, 蔡扬扬, 王杰. 聚羧酸系减水剂复配β-环糊精对高贝利特硫铝酸盐水泥性能的影响[J]. 材料导报, 2018, 32(22): 4000-4005.
[3] 魏明炜, 陈岁元, 郭快快, 梁京, 刘常升. EIGA法制备激光3D打印用TA15钛合金粉末*[J]. 《材料导报》期刊社, 2017, 31(12): 64-67.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed