Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 64-67    https://doi.org/10.11896/j.issn.1005-023X.2017.012.014
  材料研究 |
EIGA法制备激光3D打印用TA15钛合金粉末*
魏明炜1, 陈岁元1,2, 郭快快2, 梁京1, 刘常升1,2
1 东北大学材料科学与工程学院,材料各向异性与织构教育部重点实验室, 沈阳 110819;
2 东北大学鞍山激光应用技术研究院, 鞍山 114000
Preparation of TA15 Titanium Alloy Powder by EIGA for Laser 3D Printing
WEI Mingwei1, CHEN Suiyuan1,2, GUO Kuaikuai2, LIANG Jing1, LIU Changsheng1,2
1 Key Laboratory for Anisotropy and Texture of Materials Ministry of Education, School of Material Science and Engineering, Northeastern University, Shenyang 110819;
2 Institute of Laser Application Technology, Northeastern University, Anshan 114000
下载:  全 文 ( PDF ) ( 1860KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电极感应熔炼气雾化(EIGA)法制备了激光3D打印用TA15钛合金粉末,研究了熔炼功率对粉末收得率、粒径分布、粉末形貌、松装密度和流动性等特征的影响。结果表明,随着感应熔炼功率增大,粉末收得率和平均粒径减小,当熔炼功率为65 kW时,粉末收得率超过62%,中值粒径D50小于100 μm,松装密度为2.731 g/cm3,流动性为22.46 s/50 g。对粒径50~180 μm的粉末采用激光3D打印,激光直接沉积成形的TA15钛合金样品表面无宏观裂纹和气孔等缺陷,金相组织为细晶网篮组织,制备的TA15钛合金粉末具有良好的可打印性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏明炜
陈岁元
郭快快
梁京
刘常升
关键词:  EIGA法  TA15钛合金粉末  激光3D打印  粉末可打印性    
Abstract: TA15 titanium alloy powder was prepared by electrode induction melting gas atomization (EIGA) for laser 3D printing. The effect of different smelting power on printable powder production rate, particle size, powder morphology, apparent density, flowability were studied. The results showed that production rate of printable powder and sphericity were improved with the increase of smelting power, and particle size was decreased. When the smelting power was 65 kW, the production rate of printable powder was 62%, the average particle size D50 was below 100 μm, apparent density was 2.731 g/cm3 and flowability was 22.46 s/50 g. Then, powders with particle size of 50-180 μm was laser deposited directly. The surface of printed samples had no macroscopic defects (such as cracks and pores) and the microstructure of TA15 titanium alloy was basketweave organization. TA15 powders prepared via EIGA method had better laser 3D printability.
Key words:  EIGA method    TA15 powder    laser 3D printing    powder printability
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TG146.2  
基金资助: *国家重点研发计划项目(2016YFB1100201);辽宁省科技计划项目(2014221006);教育部基本科研业务费重大创新项目(N130810002);广东省科技计划项目(2015B010122001)
通讯作者:  陈岁元:通讯作者, 男, 1964年生,博士,教授,博士研究生导师,研究方向为材料先进制备与处理技术 E-mail:chensy@smm.neu.edu.cn   
作者简介:  魏明炜:男, 1990年生,博士研究生,研究方向为3D打印合金粉末制备与可打印性能 E-mail:wmw90924@126.com
引用本文:    
魏明炜, 陈岁元, 郭快快, 梁京, 刘常升. EIGA法制备激光3D打印用TA15钛合金粉末*[J]. 《材料导报》期刊社, 2017, 31(12): 64-67.
WEI Mingwei, CHEN Suiyuan, GUO Kuaikuai, LIANG Jing, LIU Changsheng. Preparation of TA15 Titanium Alloy Powder by EIGA for Laser 3D Printing. Materials Reports, 2017, 31(12): 64-67.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.014  或          http://www.mater-rep.com/CN/Y2017/V31/I12/64
1 Huang C F. Modern aeroengine integral blisk and its manufacturing technology [J]. Aeronaut Manuf Technol,2006,4:95.
2 Turner B N, Gold S A. A review of melt extrusion additive manufacturing processes:Ⅱ. Materials, dimensional accuracy and surface roughness [J]. Rapid Prototyping J,2015,21(3):250.
3 Shi L, Li Q. Mechanism study of producing non-spherical powder in gas atomization [J]. China Welding:English Edition,2013,22(2):60.
4 Heidloff A J, Rieken J R, Anderson I E,et al. Advance gas atomization processing for Ti and Ti alloy powder manufacturing [J]. J Mater,2010,62(5):35.
5 Ahsan M N, Pinkerton A J, Moat R J, et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders [J]. Mater Sci Eng A,2011,528:7648.
6 Chen H M, Hu B F, Li H Y, et al. Microstructure characteristics of FGH95 superalloy powders prepared by PREP [J]. Acta Metall Sin,2003,39(1):30(in Chinese).
陈焕铭, 胡本芙, 李慧英,等. 等离子旋转电极雾化FGH95高温合金粉末颗粒凝固组织特质[J]. 金属学报,2003,39(1):30.
7 Yablokovaa G,et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants [J]. Powder Technol,2015,283(1):199.
8 Guo S R, Chen Z J, Zhang Q L,et al. Effect of different pressures on laser cladding special powder prepared by gas atomization [J]. Chin J Laser,2013,40(6):1(in Chinese).
郭士锐, 陈智君, 张群莉,等. 不同压力对气雾化激光熔覆专用合金粉末影响[J]. 中国激光,2013,40(6):1.
9 Yu X L, Zhao M Q, Zhao G Y. Influence of atomizing gas pressure on 63A solder powder in supersonic atomization [J]. Powder Metall,2004,47(2):200.
10 Liu Y Z, Minagawa K, Kakisawa H, et al. Melt film formation and disintegration during novel atomization process [J]. Trans Nonferr Met Soc China,2007,17:1276.
11 Ouyang H W, Chen X, Huang B Y. Influence of melt superheat on breakup process of close coupled gas atomization [J]. Trans Nonferr Met Soc China,2007,17:967.
12 Hu W B, Jia C C, Hu B F, et al. Solidification microstructure of FGH96 superalloy powder prepared by argon gas atomization [J]. Mater Sci Eng Powder Metall,2011,5(16):671(in Chinese).
胡文波, 贾成厂, 胡本芙, 等. 氩气雾化法制备 FGH96 高温合金粉末颗粒的凝固组织[J]. 粉末冶金材料科学与工程,2011,5(16):671.
13 Aksoy A, Unal R. Effects of gas pressure and protrusion length of melt delivery tube on powder size and powder morphology of nitrogen gas atomised tin powders [J]. Powder Metall,2013,49(4):349.
14 Kékesin T, Amberg G, Wittberg L P. Drop deformation and breakup in flows with shear [J]. Chem Eng Sci,2016,140:319.
15 He W W, Tang H P, Liu Y, et al. Preparation of high-temperature TiAl pre-alloyed powder by PREP and its densification microstructure research [J]. Rare Met Mater Eng,2014,23(11):2768(in Chinese).
贺卫卫, 汤慧萍, 刘咏, 等. PREP 法制备高温 TiAl 预合金粉末及其致密化坯体组织研究[J]. 稀有金属材料与工程,2014,23(11):2768.
16 Paydas H, Mertens A, Carrus R, et al. Laser cladding as repair technology for Ti-6Al-4V alloy: Influence of building strategy on microstructure and hardness [J]. Mater Des,2015,85:497.
[1] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed