Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12063-12069    https://doi.org/10.11896/cldb.20040209
  无机非金属及其复合材料 |
3D打印UHPC的制备和力学性能试验研究
白刚, 王里, 王芳, 程新睿
河北工业大学土木与交通学院,天津 300401
Investigation of the Printability and Mechanical Properties of 3D Printing UHPC
BAI Gang, WANG Li, WANG Fang, CHENG Xinrui
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 5279KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土材料的制备和性能优化是3D打印(3DP)智能建造技术的关键和核心。研发3D打印超高性能混凝土(3DP-UHPC)可促进该技术的推广应用。超高性能混凝土(UHPC)属胀流型流体,在挤压作用下会发生剪切增稠现象,不利于3D打印成型。本工作提出应用化学促凝和物理絮凝协调控制的水泥基复合材料改性方法,优化硫铝酸盐水泥、纤维素和黏土复掺比例,促进UHPC胀流型流体向宾汉姆流体的逐渐改变,制备3D打印UHPC材料。测试打印材料的抗压、抗拉、抗弯等基本力学性能,分析其微观形貌。结果表明:调整促凝/絮凝(A/F)比例有助于优化UHPC的3D可打印性,提高UHPC的力学性能。当硫铝酸盐水泥替代普通硅酸盐水泥的质量分数为10%时,流动度控制在180~200 mm范围内,A/F比例满足相应的3D可打印性能要求。3DP-UHPC的抗压强度为129.6 MPa,抗弯强度为16.3 MPa,抗拉强度为4.6 MPa,极限拉伸率为1.2%。打印工艺有利于钢纤维形成定向分布,益于改善UHPC的韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白刚
王里
王芳
程新睿
关键词:  3D打印  超高性能混凝土  可打印性  破坏机理    
Abstract: The preparation and performance optimization of concrete materials is the key of 3D printing (3DP) construction technology. The research of 3D printing ultra-high performance concrete (3DP-UHPC) can promote the popularization and application of this technology. Ultra-high performance concrete (UHPC) belongs to the pseudo-plastic fluid, and shear thickening occurs under the compression, which is not conducive to 3D printing. In this paper, a modified method of cement-based composite material, which is controlled by chemical acceleration and physical flocculation, was proposed to optimize the mix proportion of sulphoaluminate cement, cellulose and clay, and to promote the gradual change of UHPC flow pseudo-plastic fluid to bingham fluid, so as to prepare 3DP-UHPC material. The basic mechanical properties of the printing material, such as compression, tensile and bending, were tested and the micro morphology was analyzed. The results show that, adjusting the acceleration/flocculation (A/F) radio is helpful to optimize the 3D printability of UHPC and enhance the mechanical properties of UHPC. When the mass fraction of sulphoaluminate cement instead of Portland cement is 10%, the fluidity is controlled in the range of 180—200 mm, and the A/F ratio meets the corresponding 3D printable performance requirements. 3DP-UHPC has compressive strength of 129.6 MPa, bending strength of 16.3 MPa, tensile strength of 4.6 MPa and ultimate tensile rate of 1.2%. The printing process is beneficial to the formation of directional distribution of steel fiber and the improvement of toughness of UHPC.
Key words:  3D printing    ultra-high performance concrete (UHPC)    printability    failure mechanism
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878241);河北省研究生创新资助项目(CXZZBS2019042)
通讯作者:  wangl1@hebut.edu.cn   
作者简介:  白刚,2016年6月毕业于河北工业大学城市学院,获得工学学士学位。现为河北工业大学土木与交通学院博士研究生,主要从事混凝土3D打印领域的研究。
王里,讲师,硕士研究生导师,院长助理,河北工业大学元光学者。2017年6月获中国矿业大学(北京)土木工程博士学位,澳大利亚西澳大学访问学者,河北省“巨人计划”创新团队成员,中国混凝土与水泥制品协会3D打印分会委员,自防护混凝土材料与工程技术分会专家委员会委员。目前主持国家自然科学基金项目2项,天津市自然科学基金面上项目1项。主要研究方向为3D打印混凝土、光测力学、先进建造技术等。
引用本文:    
白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
BAI Gang, WANG Li, WANG Fang, CHENG Xinrui. Investigation of the Printability and Mechanical Properties of 3D Printing UHPC. Materials Reports, 2021, 35(12): 12063-12069.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040209  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12063
1 Saade M R M, Yahia A, Amor B. Journal of Cleaner Production, 2020, 244, 118803.
2 Paolini A, Kollmannsberger S, Rank E. Additive Manufacturing, 2019, 30, 100894.
3 Zhang J, Wang J, Dong S, et al. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105533.
4 Li V C, Bos F P, Yu K, et al. Cement and Concrete Research, 2020, 132, 106038.
5 Li Z, Wang L, Ma G. Composites Part B: Engineering, 2020, 187, 107796.
6 Farina I, Modano M, Zuccaro G, et al. Composites Part B: Engineering, 2018, 145, 155.
7 Vantyghem G, De Corte W, Shakour E, et al. Automation in Construction, 2020, 112, 103084.
8 Asprone D, Menna C, Bos F P, et al. Cement and Concrete Research, 2018, 112, 111.
9 Zhu B R, Pan J L, Zhou Z X, et al. Materials Review A: Review Papers, 2018, 32(12), 4150(in Chinese).
朱彬荣, 潘金龙, 周震鑫, 等. 材料导报:综述篇, 2018, 32(12), 4150.
10 Zhang Y S, Zhang W H, Chen Z Y. Materials Review A: Review Papers, 2017, 31(12), 1(in Chinese).
张云升, 张文华, 陈振宇. 材料导报:综述篇, 2017, 31(12), 1.
11 Wang D, Shi C, Wu Z, et al. Construction and Building Materials, 2015, 96, 368.
12 Roussel N. Cement and Concrete Research, 2018, 112, 76.
13 Khayat K H, Meng W, Vallurupalli K, et al. Cement and Concrete Research, 2019, 124, 105828.
14 Yang Q, Zhang X Z, Liu D, et al. Materials Review, 2018, 32(S2), 517(in Chinese).
杨清, 张秀芝, 刘迪, 等. 材料导报, 2018, 32(专辑32), 517.
15 LIU S F, Wang P M, Xu Y. Journal of Buliding Materials, 2012, 15(5), 674 (in Chinese).
刘斯凤, 王培铭, 徐勇. 建筑材料学报, 2012, 15(5), 674.
16 Ou Z H, Ma B G, Jian S W. Journal of Buliding Materials, 2013, 16(1), 121(in Chinese).
欧志华, 马保国, 蹇守卫. 建筑材料学报, 2013, 16(1), 121.
17 Panda B, Ruan S, Unluer C, et al. Composites Part B: Engineering, 2019, 165, 75.
18 Qian Y, Kawashima S. Cement and Concrete Research, 2016, 90, 73.
19 Mechtcherine V, Bos F P, Perrot A, et al. Cement and Concrete Research, 2020, 132, 106037.
20 Wangler T, Roussel N, Bos F P, et al. Cement and Concrete Research, 2019, 123, 105780.
21 Marchon D, Kawashima S, Bessaies-Bey H, et al. Cement and Concrete Research, 2018, 112, 96.
22 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials, 2015, 101, 741.
23 Niu X J, Peng G F, Shang Y J, et al. Journal of the Chinese Ceramic Society, 2018, 46(8), 1141(in chinese).
牛旭婧, 朋改非, 尚亚杰, 等. 硅酸盐学报, 2018, 46(8), 1141.
24 Tay Y W D, Qian Y, Tan M J. Composites Part B: Engineering, 2019, 174, 106968.
25 Yang Q, Zhang X Z, Liu D, et al. Materials Review, 2018, 32(S2), 517(in Chinese).
杨清, 张秀芝, 刘迪, 等. 材料导报, 2018, 32(专辑32), 517.
26 Zhao J X, Huang L, Xie J H. China Journal of Highway and Transport, 2019, 32(7), 111(in Chinese).
赵金侠, 黄亮, 谢建和.中国公路学报, 2019, 32(7), 111.
27 Liu J Z, Han F Y, Zhou H X, et al. Materials Review A: Review Papers, 2017, 31(12), 24(in Chinese).
刘建忠, 韩方玉, 周华新, 等. 材料导报:综述篇, 2017, 31(12), 24.
[1] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[2] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[3] 邓宗才, 连怡红, 赵连志. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[4] 杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
[5] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[6] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[7] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[8] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[9] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[10] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[11] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[12] 王行, 郭子傲, 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 白培康. 适于3D打印的金属及陶瓷粉末表面包覆研究进展[J]. 材料导报, 2020, 34(21): 21166-21171.
[13] 王海霞, 段光远, 朱吉萌, 王加稳, 乔春梅. 基于自由基聚合的3D打印材料变形情况表征[J]. 材料导报, 2019, 33(Z2): 573-576.
[14] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[15] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed