Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10062-10072    https://doi.org/10.11896/cldb.20030105
  无机非金属及其复合材料 |
SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究
杨荣周, 徐颖, 陈佩圆, 王佳
安徽理工大学土木建筑学院,淮南 232001
Experimental Study on Dynamic Mechanics, Energy Characteristics, and Failure Mechanism of Rubber Cement Mortar Under SHPB Splitting Test
YANG Rongzhou, XU Ying, CHEN Peiyuan, WANG Jia
School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
下载:  全 文 ( PDF ) ( 9154KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于静载巴西劈裂原理,开展了橡胶水泥砂浆的分离式霍普金森压杆(SHPB)劈裂试验,对其动态力学、能量特性及破坏机理进行了研究。根据损伤力学,从强度和能量的角度分析了橡胶掺量、养护湿度和冲击荷载对水泥砂浆动态劈裂损伤的影响,并探讨了三种损伤因素下的六种损伤路径。结合圆盘试件的破坏模式,建立了冲击劈裂简化平面理想受力模型,分析了破裂方式-Ⅰ和破裂方式-Ⅱ两种截然不同的动态劈裂方式,并初步探讨了破裂方式-Ⅱ下圆盘试样的破坏机理。结果表明,掺入橡胶颗粒和降低养护湿度均降低了水泥砂浆的动态劈裂拉伸强度;普通水泥砂浆和橡胶水泥砂浆有着相同的应力率和应变率演化趋势;掺入橡胶颗粒和降低养护湿度均在一定程度上阻碍了能量在水泥砂浆圆盘试件中的传递;不同的单一损伤因素和复合损伤因素对水泥砂浆圆盘试样造成的动态劈裂损伤不同;在较大的冲击荷载下,圆盘试样会因“三角形压碎区”、“劈裂拉伸区”和“弯曲断裂区”的形成而被破坏。最后,从细观的角度分析讨论了界面过渡区(ITZ)对SHPB劈裂下橡胶水泥砂浆强度和抗冲击性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨荣周
徐颖
陈佩圆
王佳
关键词:  橡胶水泥砂浆  分离式霍普金森压杆(SHPB)  巴西劈裂  动态力学  能量特性  破坏机理    
Abstract: In this paper, based on the Brazilian splitting principle under static load, the SHPB splitting test of rubber cement mortar was carried out, and the dynamic mechanics, energy characteristics, and failure mechanism of rubber cement mortar under the SHPB splitting test were studied. Based on damage mechanics, the effects of rubber content, curing humidity, and impact load on dynamic splitting damage of cement mortar were analyzed from the point of view of strength and energy, and six damage paths under three damage factors were discussed.Combined with the fai-lure modes of disc specimens, a simplified plane ideal force model of impact splitting was established. Two different dynamic splitting fracture forms on fracture form-Ⅰ and fracture form-Ⅱ were analyzed and the failure mechanism of disk specimen under fracture form-Ⅱ was discussed preliminarily. The above research results showed that the addition of rubber and the decrease of curing humidity have a great negative effect on the dynamic splitting tensile strength of cement mortar. Normal cement mortar disc specimens and rubber cement mortar disc specimens have the same evolution trends of stress rate and strain rate. The addition of rubber particles and the decrease of curing humidity hinders the transfer of energy in cement mortar disc specimens to some extent. The dynamic splitting damage of cement mortar disc samples caused by different single damage factors and different compound damage factors is different. Under higher impact pressure, the disk specimen is likely to be destroyed by the formation of “triangular crushing zone”, “splitting tensile zone” and “bending fracture zone”. Finally, the effect of ITZ on the strength and impact resistance of rubber cement mortar under SHPB splitting was analyzed from a mesoscopic point of view.
Key words:  rubber cement mortar    split Hopkinson pressure bar (SHPB)    brazilian splitting    dynamic mechanics    energy characteristics    fai-lure mechanism
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TB332  
基金资助: 安徽省重点研究与开发项目(201904a07020081);安徽省自然科学基金青年基金(1908085QE213).
通讯作者:  yxu@aust.edu.cn   
作者简介:  杨荣周,安徽理工大学博士研究生,主要从事土木工程材料力学性能、能量及爆炸冲击方面的研究。
徐颖,教授,博士,博士研究生导师,长期从事土木工程材料、岩土工程爆破、矿山建设工程等方向的教学和科研工作,先后主持了国家自然科学基金重点项目、面上项目及省部级项目20项。发表论文150余篇,其中被SCI、EI收录40篇,出版《地下工程爆破理论及应用》《软弱层带爆炸注浆理论与实践》等学术专著和教材5部。获省部级科学技术一等奖1项、二等奖2项、三等奖10项,获教育部新世纪优秀人才、全国有突出贡献的爆破专家、安徽省学术和技术带头人、安徽省优秀青年科技创新奖等荣誉称号,学术兼职为中国爆破行业协会副会长、中国力学学会工程爆破专业委员会副主任委员、中国煤炭专家委员会爆破器材与技术专家委员会委员、中国工程爆破专家委员会副主任委员等。
引用本文:    
杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
YANG Rongzhou, XU Ying, CHEN Peiyuan, WANG Jia. Experimental Study on Dynamic Mechanics, Energy Characteristics, and Failure Mechanism of Rubber Cement Mortar Under SHPB Splitting Test. Materials Reports, 2021, 35(10): 10062-10072.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030105  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10062
1 Valente M, Sibai A.Journal of Applied Biomaterials & Functional Mate-rials, 2019, 17(1), DOI: 10.1177/2280800019835486.
2 Abdelmonem A, El-Feky M S, Nasr E S A R, et al.Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2019.08.041.
3 Xu J, Yao Z Y, Yang G, et al.Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2019.117282.
4 Strukar K, Šipoš T K, Milićević I, et al.Engineering Structures, 2019, 188, 452.
5 Liu B D, Feng M Y, Lin B H, et al. China Railway Science, 2019, 40(6), 9 (in Chinese).
刘保东, 冯明扬, 林柏欢, 等.中国铁道科学, 2019, 40(6), 9.
6 Segre N, Joekes I.Cement and Concrete Research, 2000, 30 (9), 1421.
7 Zhao Q H, Wang F, Zhu H. Acta Materiae Compositae Sinica, 2018, 35(8), 2222 (in Chinese).
赵秋红, 王菲, 朱涵.复合材料学报, 2018, 35(8), 2222.
8 Feng W H, Liu F, Yang F, et al. Construction and Building Materials, 2019, 224, 408.
9 Feng W H, Liu F, Yang F, et al. Construction and Building Materials, 2018, 165, 675.
10 Hao Y H, Fan L, Han Y, et al.Journal of Vibration and Shock, 2019, 38(17), 73 (in Chinese).
郝贠洪, 樊磊, 韩燕, 等. 振动与冲击, 2019, 38(17), 73.
11 Di S T, Jia C, Qiao W G, et al. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6), 1900 (in Chinese).
狄胜同, 贾超, 乔卫国, 等.吉林大学学报(工学版), 2019, 49(6), 1900.
12 Liu B D, Yang S Z, Li W L, et al. Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2019.117286.
13 Xue G, Hou S, Niu J G. Building Structure, 2019, 49(12), 98 (in Chinese).
薛刚, 侯帅, 牛建刚. 建筑结构, 2019, 49(12), 98.
14 Yan Y D, Liu R G, Lu C H, et al. Journal of Harbin Institute of Techno-logy, 2016, 48(12), 148 (in Chinese).
延永东, 刘荣桂, 陆春华, 等. 哈尔滨工业大学学报, 2016, 48(12), 148.
15 Yang R Z, Xu Y, Chen P Y, et al.Material Reports B:Research Papers, 2020, 34(2), 4049 (in Chinese).
杨荣周, 徐颖, 陈佩圆, 等.材料导报:研究篇, 2020, 34(2), 4049.
16 Yang R Z, Xu Y, Chen P Y.Material Reports B:Research Papers, 2020,34(7),14070 (in Chinese).
杨荣周, 徐颖, 陈佩圆.材料导报:研究篇, 2020,34(7),14070.
17 Gong F Q, Li X B, Zhao J.Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5), 881 (in Chinese).
宫凤强, 李夕兵, Zhao J.岩石力学与工程学报, 2010, 29(5), 881.
18 Xu Y, Shao B B, Xu W W, et al.Explosion and Shock Waves, 2017, 37(2), 315 (in Chinese).
徐颖, 邵彬彬, 许维伟, 等.爆炸与冲击, 2017, 37(2), 315.
19 Li M, Qiao L, Li Q W.Chinese Journal of Geotechnical Engineering, 2017, 39(7), 1336 (in Chinese).
李淼, 乔兰, 李庆文.岩土工程学报, 2017, 39(7), 1336.
20 Ping Q, Ma Q Y, Yuan P, et al.Journal of Mining and Safety Enginee-ring, 2013, 30(3), 401 (in Chinese).
平琦, 马芹永, 袁璞,等.采矿与安全工程学报, 2013, 30(3), 401.
21 Su X B, Ji H G, Pei F, et al.Journal of Harbin Institute of Technology, 2018, 50(8), 161 (in Chinese).
苏晓波, 纪洪广, 裴峰, 等.哈尔滨工业大学学报, 2018, 50(8), 161.
22 Xia K W, Yao W. Journal of Rock Mechanics and Geotechnical Enginee-ring, 2015, 7(1), 27.
23 Xue Y Z, Liu T, Tang L Z, et al.Journal of Wuhan University of Techno-logy, 2013, 35(3), 97(in Chinese).
薛奕忠, 刘涛, 唐礼忠, 等.武汉理工大学学报, 2013, 35(3), 97.
24 Xu J P, Dong X L, Fu Y Q, et al.Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3), 864(in Chinese).
徐纪鹏, 董新龙, 付应乾, 等.力学学报, 2020, 52(3), 864.
25 Yang R S, Li W Y, Li Y L, et al.Journal of China Coal Society, 2020, 45(9), 3107(in Chinese).
杨仁树, 李炜煜, 李永亮, 等. 煤炭学报, 2020, 45(9), 3107.
26 Yang R Z, Xu Y, Chen P Y, et al.Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2020.120071.
27 Li Y, Zhang X, Wang R J, et al. Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2019.116691.
[1] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[2] 杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
[3] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[4] 辛雪, 苏林萍, 梁 明, 姚占勇, 范维玉, 南国枝, 张吉哲. 废胶粉改性制备高模量沥青及其动态力学性能[J]. 材料导报, 2020, 34(18): 18060-18064.
[5] 杨荣周, 徐颖, 陈佩圆. 养护湿度对橡胶水泥砂浆动态压缩破坏特征及能量耗散的影响[J]. 材料导报, 2020, 34(14): 14070-14078.
[6] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[7] 张文华, 刘鹏宇, 吕毓静. 超高性能混凝土动态力学性能研究进[J]. 材料导报, 2019, 33(19): 3257-3271.
[8] 樊凯, 卢雪峰, 张典堂, 钱坤. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed