Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4049-4055    https://doi.org/10.11896/cldb.18120117
  无机非金属及其复合材料 |
干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性
杨荣周, 徐颖, 陈佩圆, 葛进进
安徽理工大学土木建筑学院,淮南 232001
Compressive Rupture and Energy Evolution Characteristics of Rubber Fine Aggregate Cement Mortar Under Dry and Wet Curing Conditions
YANG Rongzhou, XU Ying, CHEN Peiyuan, GE Jinjin
School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
下载:  全 文 ( PDF ) ( 4670KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开展相对湿度为95%和50%养护条件下橡胶水泥砂浆试件的单轴压缩试验,对试件压缩变形过程的破裂机理及能量转化进行了分析,建立了橡胶水泥砂浆的单轴受压理想细观模型。结果表明,与普通水泥砂浆相比,橡胶水泥砂浆单轴压缩破坏模式有很大差异,表现为裂而不散的延性破坏模式,而非普通水泥砂浆的锥形脆性破坏模式。试件破裂能量演化过程包括压密、弹性变形、破裂发展、峰后软化四个阶段,并伴随着能量输入、能量积聚、能量耗散、能量释放四个过程。降低养护湿度和增加橡胶掺量均会使试件吸收能量的速率降低,在破坏阶段试件仍然可以继续积聚弹性能,且随橡胶掺量的增加其积聚弹性能的能力越强。养护湿度对普通水泥砂浆的储能极限影响较大,对橡胶水泥砂浆的储能极限影响较小,橡胶水泥砂浆Uc95-Uc50的最大值也仅为普通水泥砂浆Uc95-Uc50的1/10左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨荣周
徐颖
陈佩圆
葛进进
关键词:  干、湿养护  橡胶水泥砂浆  单轴压缩  破裂机理  能量演化    
Abstract: The uniaxial compression test of rubber cement mortar specimens under curing conditions of 95% and 50% relative humidity was carried out. The fracture mechanism and energy conversion of the specimens during compression deformation were analyzed. The ideal mesoscopic model of uniaxial compression of rubber cement mortar was established. The results showed that the uniaxial compression failure mode of rubber cement mortar is quite different from that of normal cement mortar. It is a ductile failure mode that does not scatter even if it is cracked, rather than the cone-shaped brittle failure mode of normal cement mortar. The evolution process of the fracture energy of the specimen includes four stages of compaction, elastic deformation, rupture development and post-peak softening, accompanied by energy input, energy accumulation, energy dissipation and energy release. Both the decrease of curing humidity and the increase of rubber content will reduce the rate of energy absorption, but the specimen can still continue to accumulate elastic energy in the failure stage, and with the increase of rubber content, the ability of specimens to accumulate elastic energy is stronger. Curing humidity has great influence on the energy storage limit of normal cement mortar, but has little influence on the energy storage limit of rubber cement mortar, the maximum value of the rubber cement mortar Uc95-Uc50 is only about 1/10 of the ordinary cement mortar Uc95-Uc50.
Key words:  dry and wet curing    rubber cement mortar    uniaxial compression    fracture mechanism    energy evolution
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51728201)
通讯作者:  yxu@aust.edu.cn   
作者简介:  杨荣周,安徽理工大学博士研究生,主要从事材料力学性能、能量及爆炸冲击方面的研究;徐颖,教授,博士研究生导师,主要从事岩石冲击动力学、智能材料、岩土工程爆破等方向的教学和科研工作。现为安徽理工大学科技产业处处长、教育部新世纪优秀人才、安徽省学术与技术带头人、安徽省高等学校学科拔尖人才、中国爆破行业协会副会长、中国煤炭工业技术委员会爆破器材与技术专家委员会主任、中国力学学会工程爆破专业委员会副主任、中国爆破专家委员会副主任委员、安徽省工程爆破协会副理事长。先后主持国家自然科学基金重点项目和面上项目4项,高等学校博士点专项基金2项,教育部重点项目2项,安徽省科技攻关项目及自然科学基金项目4项,其他省部级项目6项,企业重大科技攻关项目30余项。获得省部级科技奖励13项。在《岩石力学与工程学报》《煤炭学报》《中国科学技术大学学报》《工程爆破》《矿冶工程》以及国内外学术会议上发表论文200余篇,出版《地下工程爆破理论及应用》等学术专著四部。获第三届、第四届安徽省优秀青年科技创新奖,淮南市杰出青年科技创新奖,安徽省教学名师,安徽省师德标兵及淮南市首届五四青年奖章等荣誉称号。
引用本文:    
杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
YANG Rongzhou, XU Ying, CHEN Peiyuan, GE Jinjin. Compressive Rupture and Energy Evolution Characteristics of Rubber Fine Aggregate Cement Mortar Under Dry and Wet Curing Conditions. Materials Reports, 2020, 34(4): 4049-4055.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120117  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4049
1 Di S T, Jia C, Qiao W G, et al. Advances in Materials Science and Engineering, DOI: 10.1155/2018/9843416.
2 Herrera-Sosa E S, Martinez-Barrera G, Barrera-Diaz C, et al. International Journal of Polymer Science, DOI: 10.1155/2015/234690.
3 Grinys A, Sivilevicius H, Dauksys M. Journal of Civil Engineering and Management, 2012, 18(3), 393.
4 Xue G, Cao M L. Advances in Civil Engineering, DOI: 10.1155/2017/8643839.
5 Li X D, Mao H Y,Xu K, et al. Shock and Vibration, DOI: 10.1155/2018/3128268.
6 Liu C S, Zhu H, Li Z G, et al. Concrete, 2005(7), 38(in Chinese).
刘春生, 朱涵, 李志国, 等. 混凝土, 2005(7), 38.
7 Hernández-Olivares F, Barluenga G, Bollati M, et al. Cement and Concrete Research, 2002, 32(10), 1587.
8 Kang J F, Ren H B, Zhang P Z. Acta Materiae Compositae Sinica, 2006, 23(6), 158(in Chinese).
亢景付, 任海波, 张平祖. 复合材料学报, 2006, 23(6), 158.
9 Kang J F, Zhang P Z. Journal of Tianjin University, 2006, 39(9), 1026(in Chinese).
亢景付, 张平祖. 天津大学学报, 2006, 39(9), 1026.
10 Luo M Y, Zeng Q, Pang X Y, et al. Journal of the Chinese Ceramic So-ciety, 2013, 41(5), 597(in Chinese).
罗明勇, 曾强, 庞晓贇, 等. 硅酸盐学报, 2013, 41(5), 597.
11 Zhang J X, Jin S S. Microscopic pore structure of cement concrete and its effect, Science Press, China, 2014(in Chinese).
张金喜, 金珊珊. 水泥混凝土微观孔隙结构及其作用, 科学出版社, 2014.
12 Guo S H. Advances in Mechanics, 1993, 23(4), 520(in Chinese).
郭少华. 力学进展, 1993, 23(4), 520.
13 Li Q B. Fracture damage mechanics of concrete, Science Press, China, 2017(in Chinese).
李庆斌. 混凝土断裂损伤力学, 科学出版社, 2017.
14 Li J, Lu Z H, Zhang Q Y. Journal of Tongji University, 2003, 31(5), 505(in Chinese).
李杰, 卢朝辉, 张其云. 同济大学学报, 2003, 31(5), 505.
15 Yang W Z, Fan J. Journal of Zhengzhou University(Engineering Science), 2006, 27(1), 1(in Chinese).
杨卫忠, 樊濬. 郑州大学学报(工学版), 2006, 27(1), 1.
16 Zhang Z Z, Gao F. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6), 1198(in Chinese).
张志镇, 高峰. 岩石力学与工程学报, 2012, 31(6), 1198.
17 Xie H P, Ju Y, Li L Y. Chinese Journal of Rock Mechanics and Enginee-ring, 2005, 24(17), 3003(in Chinese).
谢和平, 鞠杨, 黎立云. 岩石力学与工程学报, 2005, 24(17), 3003.
18 Li L Y, Xie H P, Ju Y. Engineering Mechanics, 2011, 28(3), 35(in Chinese).
黎立云, 谢和平, 鞠杨. 工程力学, 2011, 28(3), 35.
19 Zhang L M, Gao S, Ren M Y, et al. Journal of China Coal Society, 2014, 39(7), 1238(in Chinese).
张黎明, 高速, 任明远, 等. 煤炭学报, 2014, 39(7), 1238.
20 Yan Y D, Liu R G, Lu C H, et al. Journal of Harbin Institute of Technology, 2016, 48(12), 148(in Chinese).
延永东, 刘荣桂, 陆春华, 等. 哈尔滨工业大学学报, 2016, 48(12), 148.
21 Wei Y, Zheng X B, Guo W Q. Journal of Building Materials, 2016, 19(5), 902(in Chinese).
魏亚, 郑小波, 郭为强. 建筑材料学报, 2016, 19(5), 902.
[1] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[2] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[3] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[4] 李保亮, 尤南乔, 朱国瑞, 霍彬彬, 张亚梅. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24): 4072-4077.
[5] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[6] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[7] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[8] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[9] 魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
[10] 李保亮, 王月华, 潘东, 杨亮, 张亚梅. 电弧炉镍铁渣砂和镍铁渣粉的组成特性与适用性分析[J]. 材料导报, 2019, 33(22): 3752-3756.
[11] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[12] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[13] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[14] 李地红, 高群, 夏娴, 张景卫, 于海洋, 王艳君, 代函函, 许国栋. 基于BP神经网络的混凝土综合性能预测[J]. 材料导报, 2019, 33(Z2): 317-320.
[15] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed