Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3620-3629    https://doi.org/10.11896/cldb.18110175
  无机非金属及其复合材料 |
应变硬化水泥基复合材料性能与应用研究进展
高淑玲1,2, 王文昌1
1 河北工业大学土木与交通学院,天津300401
2 河北省土木工程技术研究中心,天津300401
A Review on Performance and Application of Strain HardeningCementitious Composites
GAO Shuling1,2, WANG Wenchang1
1 School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401
2 Civil Engineering Technology Research Center of Hebei Province, Tianjin 300401
下载:  全 文 ( PDF ) ( 28825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土作为典型的脆性材料,在拉伸荷载作用下呈现应变软化现象,这种不理想的失效模式会对工程结构的受力性能和耐久性能产生不利影响。通过在微观尺度上对材料进行设计,综合考虑纤维、基体和纤维/基体界面三者之间的相互作用,制备了应变硬化水泥基复合材料(SHCC)。这是一种新型的高性能纤维增强水泥基材料,相较于传统的纤维混凝土,SHCC具有两大显著优势:一是拉伸应变硬化,二是破坏失效前会产生多条细密裂缝。高延性使SHCC力学性能优良,细密裂缝有效保证了其耐久性,近年来相关的研究工作已取得了一定的进展。
    研究初期,以材料设计理论为指导使SHCC达到预定的硬化效果。纤维桥联法则是其理论基础,为了实现应变硬化,必须满足两个准则:强度准则和能量准则。设计较为完善的材料的各项力学性能指标可为工程应用提供关键信息。高强、高韧是研究者们不懈追求的目标之一,目前,已经成功设计出抗压强度高达115 MPa、极限拉应变达到8%的SHCC,而且该复合材料的大多数裂缝宽度在100 μm以下,裂缝间距不超过2 mm。关于SHCC断裂性能的研究具有挑战性,在多缝开裂阶段仍缺乏行之有效的分析手段。霍普金森杆冲击试验表明,SHCC是与应变率相关的材料,峰值应力明显随着应变率的增加而增大。在承受疲劳荷载作用时,SHCC表现出延性破坏特征,疲劳寿命相对较长。当工程结构的服役周期较长时,材料的耐久性问题不容忽视。由于SHCC的裂缝宽度较小,水分的渗透量会大幅下降,2%拉应变水平下其渗透系数只有2.10×10-7 m/s,其自愈合行为还会进一步改善渗透性。SHCC还为极端温度条件下的应用提供了可能,经受300次冻融循环后其各项性能均保持在较高水平;历经高温后纤维发生熔融留下蒸汽压力释放的通道,避免了材料的高温爆裂。此外,实际工程的检验客观真实地反映了材料的性能,SHCC已被成功应用于普通混凝土梁加固、砌体结构加固、路面桥面工程以及大坝修补等方面。
    本文介绍了SHCC的设计理念、应满足的基本准则及原材料选取;分别论述了国内外在SHCC基本力学性能和耐久性能方面取得的最新研究成果;概括了SHCC修复加固工程结构与典型的工程应用。最后,进一步探讨了SHCC研究中存在的问题,并对未来的研究方向作出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高淑玲
王文昌
关键词:  应变硬化水泥基复合材料  纤维  材料性能  耐久性  工程应用    
Abstract: As a typical brittle material, concrete exhibits strain softening under tensile load. The unfavorable failure mode can adversely affect the mechanical properties and durability of engineering structure. By material design on a micro scale, strain hardening cementitious composites (SHCC)were developed by designing materials on a microscopic scale and considering the interaction between fiber, matrix and fiber/matrix interface. This is a new type of high performance fiber reinforced cementitious composites. Compared with the traditional fiber reinforced concrete, SHCC has two significant advantages: one is tensile strain hardening, and the other is the multiple micro-cracks before failure. High ductility makes it excellent in mechanical properties, and tight cracks effectively ensure durability. In recent years, the relevant research works have made great progress.
    At the initial stage of research, the material design theory guides it to achieve the desired results. The fiber-bridging law is the theoretical basis of SHCC. In order to achieve strain hardening, two criteria must be satisfied—strength criterion and energy criterion. After the material design is refined, various mechanical performance indicators can provide key information for engineering applications. High strength and high toughness material is one of the unremitting pursuits of researchers. At present, SHCC with compressive strength up to 115 MPa and ultimate tensile strain of 8% has been successfully designed. Moreover, most crack widths are maintained under 100 μm with the crack spacing less than 2 mm. Research on the fracture properties of SHCC is challenging, and there is still a lack of effective analytical methods in the multi-cracking stage. The split Hopkinson pressure bar test showed that SHCC is a strain rate dependence material, and the peak stress increased obviously with the increase of strain rate. Subjected to fatigue loading, SHCC exhibited ductile failure characteristics and relatively high fatigue life. At the same time, considering the long service life of engineering structure, the durability of materials cannot be ignored. The amount of water permeation decreased sharply due to the small crack width of SHCC. The permeability coefficient was only 2.10×10-7 m/s at 2% tensile strain level; besides, its self-hea-ling behavior can further reduce the permeability. SHCC also provides the possibility of application under extreme temperature conditions. After 300 freeze-thaw cycles, the performance of SHCC remained at a high level; after high temperature, the melted fibers leaved small channels to release vapor pressure, avoiding explosive spalling. In addition, the actual engineering can objectively and truly reflect the material properties. SHCC has been successfully applied in ordinary concrete beam reinforcement, masonry structure reinforcement, pavement engineering and dam repair.
    This paper introduces the design concept of SHCC, the basic criteria to be satisfied and the selection of raw materials, firstly. Then, the latest research achievements in the basic mechanical performance and durability of SHCC are presented separately. Additionally, the repair and reinforcement engineering structure and its engineering application using SHCC are summarized. Finally, the problems in the current SHCC research are discussed and the further research directions are proposed.
Key words:  strain hardening cementitious composites    fiber    material performance    durability    engineering application
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51108151)
作者简介:  高淑玲,河北工业大学土木与交通学院教授、硕士生导师。2006年12月毕业于大连理工大学结构工程专业,获博士学位。主要致力于高延性水泥基复合材料的微观力学设计、本构关系、断裂破坏机理、叠合梁结构设计、界面粘结性能等方面的系统研究。主持和参与完成国家级科研项目4项、主持完成省级科研项目2项。主持和参与厅级科研项目8项,主持完成校级教改项目1项。申请发明专利3项、软件著作权1项,参与获得河北省科技进步二等奖1项,参与获得河北省交通运输厅科技进步一等奖、二等奖各1项。近年来,在高延性纤维增强水泥基复合材料领域发表论文40余篇,包括Construction & Building Materials、Advances in Civil Engineering、Journal of Wuhan University of Technology-Mater、《工程力学》和《应用基础与工程科学学报》等。任中国水力发电工程学会-岩石与混凝土断裂专业委员会委员。
    王文昌,2017年7月毕业于中国石油大学(华东),获得工学学士学位。现为河北工业大学土木与交通学院研究生,在高淑玲教授的指导下进行研究。目前主要研究方向为纤维增强水泥基复合材料力学性能。
引用本文:    
高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
GAO Shuling, WANG Wenchang. A Review on Performance and Application of Strain HardeningCementitious Composites. Materials Reports, 2019, 33(21): 3620-3629.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110175  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3620
1 Jin W L, Zhao Y X. Journal of Zhejiang University (Engineering Science), 2002(4),27(in Chinese).
金伟良, 赵羽习. 浙江大学学报(工学版) ,2002(4),27.
2 Zollo R F. Cement and Concrete Composites, 1997, 19(2), 107.
3 Mehta P K, Monteiro P J M. Concrete: Microstructure, properties, and
materials (Fourth Edition)
, McGraw-Hill Education, USA, 2014.
4 Li Q H, Xu S L. Engineering Mechanics, 2009,26(S2),23(in Chinese).
李庆华, 徐世烺. 工程力学,2009,26(S2),23.
5 Li V C, Leung C K Y.Journal of Engineering Mechanics, ASCE, 1992, 188(11), 2246.
6 Li Victor C. Journal of the Chinese Ceramic Society, 2007(4),531 (in Chinese).
Li Victor C. 硅酸盐学报, 2007, 35(4), 531.
7 Li V C. Journal of Advanced Concrete Technology, 2003, 1(3), 215.
8 Shang G X. Fiber dispersion and conductive performance experimental research on carbon fiber cement-based composites. Master's Thesis, Zhengzhou University, China, 2015 (in Chinese).
尚国秀. 碳纤维水泥基复合材料纤维分散性及导电性能试验研究. 硕士学位论文, 郑州大学, 2015.
9 Ahmet Çavdar. Composites: Part B, 2012, 43(5),2452.
10 Li V C. Materials & Structures, 2007, 40(4),387.
11 Li V C. Proceedings of the Japan Society of Civil Engineers, 1993, 10(471),1.
12 Leung C K Y. Journal of Engineering Mechanics, 1996, 122(1),10.
13 Yang E H. Designing added functions in engineered cementitious compo-sites. Ph.D. Thesis, The University of Michigan, USA, 2007.
14 Yu K Q, Wang Y C, Yu J T, et al. Construction & Building Materials, 2017, 137,410.
15 Yu K Q, Li L Z, Yu J T, et al. Engineering Structures, 2018, 170,11.
16 Redon C, Li VC, Wu C, et al. Journal of Materials in Civil Engineering, 2001, 13(6),399.
17 Xu S L, Li H D. China Civil Engineering Journal, 2008, 41(6),45 (in Chinese).
徐世烺, 李贺东. 土木工程学报, 2008, 41(6), 45.
18 Cao M L, Xu L, Zhang C. Journal of the Chinese Ceramic Society, 2015, 43(5),632 (in Chinese).
曹明莉, 许玲, 张聪. 硅酸盐学报, 2015, 43(5),632.
19 Sadrmomtazi A, Tahmouresi B, Saradar A. Construction & Building Materials, 2018, 162, 321.
20 Zhang Q Q, Liu J Z, Zhou H X, et al. Materials Review A:Review Ppapers, 2017, 31(12),73 (in Chinese).
张倩倩, 刘建忠, 周华新, 等. 材料导报:综述篇, 2017, 31(12), 73.
21 Li M, Li V C. Materials and Structures, 2013, 46(3),405.
22 Felekoglu B, Tosun-Felekoglu K, Ranade R, et al. Composites Part B: Engineering, 2014, 60,359.
23 Cai X R. The basic mechanical performance and strain hardening process theoretical analysis of ultra high toughness cementitious composites. Ph.D. Thesis, Dalian University of Technology, China, 2010 (in Chinese).
蔡向荣. 超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析. 博士学位论文, 大连理工大学, 2010.
24 Ding Y, Yu K Q, Yu J T, et al. Construction & Building Materials, 2018, 177, 102.
25 Yu K Q, Yu J T, Dai J G, et al. Construction & Building Materials, 2018, 158, 217.
26 Yu J, Leung C K Y. Journal of Materials in Civil Engineering, 2017, 29(9),05017003.
27 Zhou J, Pan J L, Leung C K Y. Journal of Materials in Civil Enginee-ring, 2014, 27(1),04014111.
28 Ding Y, Yu J T, Yu K Q, et al. Composite Structures, 2018, 185, 634.
29 Gao S L, Xu S L. Engineering Mechanics, 2007(11),12 (in Chinese).
高淑玲, 徐世烺. 工程力学, 2007(11),12.
30 Gao S L, Shi H F, Wang H C. Journal of Basic Science and Engineering, 2015, 23(2), 359 (in Chinese).
高淑玲, 史宏飞, 王海超. 应用基础与工程科学学报, 2015,23(2),359.
31 Wang Z B. Studies on mechanical performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composites. Ph.D. Thesis, Tsinghua University, China, 2016 (in Chinese).
王振波. 聚乙烯醇-钢纤维混杂增强水泥基复合材料力学性能研究. 博士学位论文, 清华大学, 2016.
32 Kabele P. Engineering Fracture Mechanics, 2007, 74(1), 194.
33 Yang E H, Li V C. Cement and Concrete Research, 2012, 42(8),1066.
34 Chen Z T, Yang Y Z, Yao Y. Materials and Design, 2013, 44, 500.
35 Liu W. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites. Ph.D. Thesis, Dalian University of Technology, China, 2012 (in Chinese).
刘问. 超高韧性水泥基复合材料动态力学性能的试验研究. 博士学位论文, 大连理工大学, 2012.
36 Liu L L, Gao S L, Xin J D, et al. Advances in Civil Engineering, 2018, 2018, 4720564.
37 Huang T, Zhang Y X, Lo S R, et al. Construction & Building Materials, 2017, 154, 167.
38 Li Q H, Huang B T, Xu S L, et al. Cement & Concrete Research, 2016, 90,174.
39 Gao S L, Wang Z, Wang W C, et al. Construction & Building Materials, 2018, 179, 172.
40 Zhou J, Qian S Z, Ye G, et al. Cement and Concrete Composites, 2012, 34(3),342.
41 Zhang J, Gong C X, Ju X C. Shuili Xuebao, 2011, 42(12), 1452 (in Chinese).
张君, 公成旭, 居贤春. 水利学报, 2011, 42(12),1452.
42 Wu M, Johannesson B, Geiker M. Construction & Building Materials, 2012, 28(1), 571.
43 Zhang Z G. Research on the self-healing mechanism and fatigue damage of ECC applying on steel bridge deck overlay. Ph.D. Thesis, Southeast University, China, 2016 (in Chinese).
张志刚. 钢桥面高延性水泥基材料铺装层自愈合机理与疲劳损伤研究. 博士学位论文, 东南大学, 2016.
44 Zhu Y, Zhang Z C, Yao Y, et al. Journal of Materials in Civil Enginee-ring, 2016, 28(6),04016017.
45 Qian S Z, Zhou J, Schlangen E. Cement & Concrete Composites, 2010, 32(9), 686.
46 Liu H Z, Zhang Q, Gu C S, et al. Cement & Concrete Composites, 2016, 72, 104.
47 Liu H Z, Zhang Q, Gu C S, et al. Cement & Concrete Composites, 2017, 82, 14.
48 Xu S L, Cai X H, Li H D. China Civil Engineering Journal, 2009, 42(9), 42(in Chinese).
徐世烺, 蔡新华, 李贺东. 土木工程学报, 2009, 42(9), 42.
49 Chai L J, Guo L P, Chen B, et al. Journal of Southeast University (Na-tural Science Edition), 2018, 48(3), 543 (in Chinese).
柴丽娟, 郭丽萍, 陈波, 等. 东南大学学报(自然科学版), 2018, 48(3), 543.
50 Gao S L, Shi H F, Wang X W. Journal of Chang' an University (Natural Science Edtion), 2016, 36(1), 36 (in Chinese).
高淑玲, 史宏飞, 王晓伟. 长安大学学报(自然科学版), 2016, 36(1), 36.
51 Nam J, Kim G, Lee B, et al. Composites Part B: Engineering, 2016, 90, 241.
52 Zhu Y, Yang Y Z, Yao Y. Construction & Building Materials, 2012, 34, 522.
53 Fu Y F, Huang Y L, Pan Z S, et al. Journal of Building Materials, 2006, 9(3), 323 (in Chinese).
傅宇方, 黄玉龙, 潘智生, 等. 建筑材料学报, 2006, 9(3), 323.
54 Zhang L H, Guo L P, Sun W, et al. Journal of the Chinese Ceramic So-ciety, 2014, 42(8), 1018 (in Chinese).
张丽辉, 郭丽萍, 孙伟, 等. 硅酸盐学报, 2014, 42(8), 1018.
55 Yu K Q, Dai J G, Lu Z D, et al. Journal of Materials in Civil Enginee-ring, 2015, 27(10), 04014268.
56 Wu C, Li V C. Composites Part B, 2017, 110, 255.
57 Bhat P S, Chang V, Li M. Construction and Building Materials, 2014, 69, 370.
58 Gao S L, Zhao X C, Qiao J L, et al.Construction and Building Materials, 2019, 196, 330.
59 Guo Y D, Gao S L. Engineering Journal of Wuhan University, 2017, 50(6),950(in Chinese).
郭亚栋, 高淑玲. 武汉大学学报(工学版),2017,50(6),950.
60 Xu S L, Wang N, Li Q H. China Civil Engineering Journal, 2010, 43(5), 17 (in Chinese).
徐世烺, 王楠, 李庆华. 土木工程学报, 2010, 43(5), 17.
61 Gao S L, Xiao C Z, Wang X W, et al. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(2), 201(in Chinese).
高淑玲, 肖成志, 王晓伟, 等. 防灾减灾工程学报, 2013, 33(2), 201.
62 Gao S L, Guo Y D, Wu Y Q, et al. Building Science, 2017, 33(1), 44(in Chinese).
高淑玲, 郭亚栋, 吴耀泉, 等. 建筑科学, 2017, 33(1), 44.
63 Gao S L, Guo Y D, Wu Y Q. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(2), 123(in Chinese).
高淑玲, 郭亚栋, 吴耀泉. 土木建筑与环境工程, 2017, 39(2), 123.
64 Gao S L, Guo Y D, Wu Y Q. Journal of Civil Engineering and Management, 2017, 34(4), 14 (in Chinese).
高淑玲, 郭亚栋, 吴耀泉. 土木工程与管理学报, 2017, 34(4), 14.
65 Leung C K Y, Cheung Y N, Zhang J. Cement & Concrete Research, 2007, 37(5),743.
66 Zhang J, Wang Z B, Ju X C, et al. Engineering Fracture Mechanics, 2014, 131, 419.
67 Deng M K, Yang S, Liang X W. China Civil Engineering Journal, 2018, 51(4),10 (in Chinese).
邓明科, 杨铄, 梁兴文. 土木工程学报, 2018, 51(4), 10.
68 Deng M K, Yang S, Wang L. Engineering Mechanics, 2018, 35(10), 101(in Chinese).
邓明科, 杨铄, 王露. 工程力学, 2018, 35(10), 101.
69 Zhou T G, Tian P, Deng M K, et al. Journal of Building Structures, 2018, 39(12),147 (in Chinese).
周铁钢, 田鹏, 邓明科, 等. 建筑结构学报, 2018, 39(12), 147.
70 Huang B T. Fatigue performance of strain-hardening fiber-reinforced cementitiotts composite and its functionally-graded structures. Ph.D. Thesis, Zhejiang University, China, 2018 (in Chinese).
黄博滔. 超高韧性纤维混凝土材料及其功能梯度结构疲劳性能研究. 博士学位论文, 浙江大学, 2018.
71 Deng M K. In: Conference Record of the 12th International Symposium on High Performance Concrete. Chengdu, 2017.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[3] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[4] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[5] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[6] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[7] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[8] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[9] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[10] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[11] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[12] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[13] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
[14] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[15] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed