Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1227-1233    https://doi.org/10.11896/cldb.18030139
  高分子与聚合物基复合材料 |
纳米纤维素及其在水凝胶中的研究进展
杨帆1, 马建中2, 鲍艳2
1 陕西科技大学化学与化工学院,西安 710021
2 陕西科技大学轻工科学与工程学院,西安 710021
Advances in Nanocellulose and Its Application in Hydrogels
YANG Fan1, mA Jianzhong2, BAO Yan2
1 College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology,Xi'an 710021
2 College of Bioresources Chemical and materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021
下载:  全 文 ( PDF ) ( 10639KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水凝胶是由化学或物理交联形成的具有高分子网络的聚合物,有较好的吸水性和保水性,且在一定压力下不会溢出。随着水凝胶进入人们的视野以来,水凝胶的制备工艺和应用范围在不断地优化和增加,但目前水凝胶仍存在较多问题亟待解决,如吸水性差、保水性差、耐盐性差、机械强度差、降解性差等,且目前多数水凝胶采用的原料仍为石油产品,由于我国资源短缺,水凝胶的进一步发展受到严重阻碍。
为了解决这些问题,研究者将视线逐渐转向了天然高分子。天然高分子材料多存在于自然界,资源丰富。最早在水凝胶中引入的主要有淀粉、纤维素、壳聚糖等物质。纤维素是自然界中最丰富的自然资源之一,且本身具有无毒、易降解、生物相容性好等优点,被广泛应用于各个领域。然而,纤维素本身水溶性差、力学性能差,虽能有效提高吸水、保水性,但在制备过程中存在一定的问题。因此,纤维素的改性成为研究热点,羧甲基纤维素等一系列衍生物虽能很好地解决纤维素难溶于水的问题,但水凝胶的凝胶强度和耐盐性仍未解决。众所周知,纳米粒子具有一定的刚性,能有效调节物质的力学性能,因此研究者将视线转向纤维素的另一衍生物,即纳米纤维素。由于纳米纤维素的尺寸为纳米级,其性质也会发生改变,纳米尺寸不仅赋予纤维素无毒、易降解等优点,还使其具有纳米粒子密度低、力学性能好、亲水性强和热膨胀系数低等优点。将纳米纤维素引入水凝胶中,相较于传统的水凝胶主要有三大优势:(1)吸水性增强;(2)耐盐性好;(3)凝胶强度高。
基于此,本文在大量文献基础上,首先综述了纳米纤维素及纳米纤维素基水凝胶的制备方法,主要包括物理机械法、化学法和物理化学结合法,并分别总结了三种制备方法的优缺点;然后介绍了纳米纤维素基水凝胶在农业、生物医药、水处理以及其他方面的应用进展;最后,对纳米纤维素基水凝胶制备及应用中面临的挑战进行了总结,并对其发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨帆
马建中
鲍艳
关键词:  水凝胶  纳米纤维素  吸水性  酸解法  酶解法  表面接枝共聚    
Abstract: Hydrogels are three-dimensional networks of hydrophilic polymers formed by chemical and/or physical crosslinking. They have favorable water absorption and water retention, and will not overflow under a certain pressure. Since hydrogels entered people's eye shot, the preparation process and application range of hydrogels have been continuously optimized and enlarged. Nevertheless, hydrogels still suffer from poor water absorption, water retention, salt tolerance, mechanical strength, and degradability. Especially, hydrogels are mostly prepared by taking petro-leum products as raw materials, and the lack of oil resources in China seriously blocks the further development of hydrogels.
For the sake of solving the above problems, researchers have gradually turned their attention to the natural macromolecules. Usually, natural macromolecules exist in nature and are rich in resources. Starch, cellulose, chitosan, etc. are the earliest natural polymers that have been found to be satisfactory for introducing in hydrogels. Among them, cellulose is the most abundant one, and it has been widely used in various fields because of its non-toxic, favorable biodegradable and biocompatible properties. However, the poor water solubility and poor mechanical properties of cellulose have prompted certain hindrance in the preparation process, despite the improved effect of water absorption and water retention. Accor-dingly, the modification of cellulose has become a hot topic. Although a series of derivatives like carboxymethyl cellulose can solve the problem of cellulose insoluble in water, the gel strength and salt tolerance of hydrogel still remain unsolved. It is universally known that nanoparticles exhibit certain rigidity and are able to regulate the mechanical property of materials. Consequently, nanocellulose, one of the modified derivatives of the cellulose has attracted numerous research interests. Thanks to the nano scale size, nanocellulose not only possesses the advantages of non-to-xic, easy degradation, but also show low density, good mechanical properties, strong hydrophilicity, low coefficient of thermal expansion, etc. Compared with tranditional hydrogel, the nanocellulose-based hydrogel is superior in the following three aspects: enhanced water absorption, considerable salt tolerance, and high gel strength.
In this article, we summarize the preparation approaches ofnanocellulose and nanocellulose-based hydrogels, including physical, chemical and physico-mechanical combined methods, and analyze the merits and drawbacks of each method. Besides, we introduce the application and develo-pment of nanocellulose-based hydrogels in agriculture, biological ,water treatment and other fields. Finally, we point out the challenges in the preparation and application of nanocellulose-based hydrogels and proposed the future prospect.
Key words:  hydrogel    nanocellulose    water absorption    acid hydrolysis method    enzymolysis approach    surface graft copolymerization
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2017YFB0308602);国家自然科学基金(21376145);陕西科技大学科研创新团队项目(TD12-03)
通讯作者:  majz@sust.edu.cn   
作者简介:  杨帆,2016年6月毕业于咸阳师范学院,获得理学学士学位。现就读于陕西科技大学化学与化工学院,攻读硕士研究生学位,目前主要研究领域为天然可再生资源的改性及利用。马建中,1983年获陕西科技大学皮革工程学士学位;1989年获陕西科技大学皮革化学与工程硕士学位;1998年获浙江大学高分子化学与物理理学博士学位;主要研究方向为有机/无机纳米复合材料。
引用本文:    
杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
YANG Fan, mA Jianzhong, BAO Yan. Advances in Nanocellulose and Its Application in Hydrogels. Materials Reports, 2019, 33(7): 1227-1233.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030139  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1227
1 Zhu H, Li Y, Fang Z, et al.ACS Nano, 2014, 8(4),3606.
2 Suttie E D . Polymer Degradation & Stability, 2001, 73(3),567.
3 Irie Y. Chemistry, 2017, 57(9),598.
4 Bao Y, ma J, Li N. Carbohydrate Polymers, 2011, 84(84),76.
5 Bai Y m. Study on preparation and properties of hydroxyl ethyl acrylate crosslinking copolymer hydrogels. master's Thesis, East China University of Science and Technology, China, 2014 (in Chinese).
白玉明. 丙烯酸羟乙酯交联共聚物水凝胶的制备及性能研究. 硕士学位论文, 华东理工大学, 2014.
6 Zhen W J, Shan Z H. modern Chemical Industry, 2008, 28(6),85(in Chinese).
甄文娟, 单志华. 现代化工, 2008, 28(6),85.
7 Payen A. Comptes Rendus, 1838, 7, 1052.
8 Spange S , Heinze T , Klemm D . Polymer Bulletin, 1992, 28(6),697.
9 Konwarh R, Karak N, misra m. Biotechnology Advances, 2013, 31(4),421.
10 Lavoine N, Desloges I, Dufresne A, et al. Carbohydrate Polymers, 2012, 90(2),735.
11 Beck-Candanedo S, Roman m , Gray D G . Biomacromolecules, 2005, 6(2),1048.
12 Terech P, Chazeau L, Cavaille J Y. macromolecules, 1999, 32(6),1872.
13 Grunert m, Winter W T. Journal of Polymers and the Environment, 2002, 10(1),27.
14 Revol J F. Carbohydrate Polymers, 1982, 2(2),123.
15 Fengel D, Wegener G. Wood: chemistry, ultrastructure, reactions. De Gruyter, Germany, 2011.
16 Araki J, Wada m, Kuga S, et al.Colloids & Surfaces A Physicochemical & Engineering Aspects, 1998, 142(1),75.
17 Zhang T, Zhang Y, Wang X Y, et al. materials Letters, DOI:10.1016/j.matlet.2018.06.101.
18 Herrick F W,Casebier R L, Hamilton J K, et al. Journal of Applied Polymer Science, 1983, 37(9),797.
19 Zimmermann T,Pöhler E, Geiger T. Advanced Engineering materials, 2004, 6(9),754.
20 Li J, Wang Y, Wei X, et al.Carbohydrate Polymers, 2014, 113,388.
21 Eriksen Ø, Syverud K, Gregersen Ø. Nordic Pulp & Paper Research Journal, 2008, 23(3),299.
22 Spence K L,Venditti R A, Rojas O J, et al. Cellulose, 2011, 18(4),1097.
23 Charreau H, Foresti m L, Vazquez A. Recent Patents on Nanotechnology, 2013, 7(1),56.
24 Tang L R. Preparation, properties and application ofnanocellulose crystal. master's Thesis, Fujian Agriculture and Forestry University, China, 2010 (in Chinese).
唐丽荣. 纳米纤维素晶体的制备、表征及应用研究. 硕士学位论文, 福建农林大学, 2010.
25 Nickerson R F,Habrle J A. Industrial & Engineering Chemistry, 1947, 39(11),1507.
26 Rånby B G, Ed. Ribi. Cellular and molecular Life Sciences, 1949, 6(1),12.
27 Li S, Li C, Li C, et al.Polymer Degradation & Stability, 2013, 98(9),1940.
28 Walter B, Gallatin J C.U.S. patent application, US3041246, 1962.
29 Pääkkö m, Ankerfors m, Kosonen H, et al. Biomacromolecules, 2007, 8(6),1934.
30 Henriksson m, Henriksson G, Berglund L A, et al. European Polymer Journal, 2007, 43(8),3434.
31 Hassan m L, Bras J, Hassan E A, et al.Industrial Crops & Products, 2014, 55(6),102.
32 Nechyporchuk O, Pignon F, Belgacem m N. Journal of materials Science, 2015, 50(2),531.
33 Xu m, Xu m D, Dai H Q, et al. Journal of Cellulose Science and Technology, 2013, 21(1),70 (in Chinese).
徐媚, 徐梦蝶, 戴红旗, 等. 纤维素科学与技术, 2013, 21(1),70.
34 Cheng Z L, Xu Q H, Gao Y. Advanced materials Research, 2012, 627,859.
35 Fukuzumi H, Saito T, Isogai A. Carbohydrate Polymers, 2013, 93(1),172.
36 Nooy A E J D, Besemer A C, Bekkum H V. Recueil des Travaux Chimiques des Pays-Bas, 1994, 113(3),165.
37 Saito T,Nishiyama Y, Putaux J L, et al. Biomacromolecules, 2006, 7(6),1687.
38 Saito T,Hirota m, Tamura N, et al. Biomacromolecules, 2009, 10(7),1992.
39 Akira I,Tsuguyuki S, Hayaka F. Nanoscale, 2011, 3(1), 71.
40 Davis N J,Flitsch S L. Tetrahedron Letters, 1993, 34(7), 1181.
41 Goetz L, mathew A,Oksman K, et al. Carbohydrate Polymers, 2009, 75(1),85.
42 Nair SS, Zhu J Y, Deng Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2014, 2(4),772.
43 Naseri N, Bhanumathyamma D, mathew A P, et al. Biomacromolecules, 2016, 17(11),3714.
44 Ruiz-Palomero C, Soriano m L, Benítez-martínez S, et al. Sensors & Actuators B Chemical, 2017, 245,946.
45 Xu Z, Li J, Zhou H, et al. RSC Advances, 2016, 6(49),43626.
46 Park m, Lee D, Hyun J.Carbohydrate Polymers, 2015, 116,223.
47 Park m, Chang H,Jeong D H, et al. BioChip Journal, 2013, 7(3),234.
48 Zhou C, Wu Q, Zhang Q.Colloid and Polymer Science, 2011, 289(3),247.
49 Spagnol C, Rodrigues F H A, Pereira A G B, et al. Carbohydrate Polymers, 2012, 87(3),2038.
50 Wang L. Study on alkaline sensitivehydrogel as carrier of insecticide. master's Thesis, South China Agricultural University, China, 2011 (in Chinese).
王磊. 碱性敏感型水凝胶作为杀虫剂载体的研究. 硕士学位论文, 华南农业大学, 2011.
51 The global market fornanocellulose to 2017. Edinburgh, Lothian EH74NA, United Kingdom: Futures markets Inc., 2012, pp. 66.
52 Wang K,Nune K C, misra R D. Acta Biomaterialia, 2016, 36,143.
53 Bhattacharya m,malinen m m, Lauren P, et al. Journal of Controlled Release, 2012, 164(3),291.
54 Ahrem H, Pretzel D, Endres m, et al. Acta Biomaterialia, 2014, 10(3),1341.
55 Sampath U G T m, Ching Y C, Cheng H C, et al. Cellulose, 2017, 24(5),2215.
56 Zhou Y, Fu S, Zhang L, et al.Carbohydrate Polymers, 2014, 101(1),75.
57 Xiong Y, Wang C, Wang H, et al. Chemical Engineering Journal, 2018, 337,143.
58 Saremi. modeling of nanocellulose hydrogel coatings on textile substrates and enzymatic modification of nanocellulose coatings for sustainable dyeing. Ph.D. Thesis, University of Georgia, America, 2017.
59 Ruiz-Palomero C, Soriano m L, Benítez-martínez S, et al. Sensors & Actuators B Chemical, 2017, 245,946.
[1] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[4] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[5] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[6] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[7] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[8] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[9] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[10] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[11] 胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
[12] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[13] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[14] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[15] 林皓, 胡家朋, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*[J]. 《材料导报》期刊社, 2017, 31(18): 55-58.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed