Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3456-3464    https://doi.org/10.11896/j.issn.1005-023X.2018.19.020
  高分子与聚合物基复合材料 |
环糊精衍生物水凝胶材料的研究进展
王志芳1,2,宣承楷1,2,刘雪敏1,2,施雪涛1,2
1 华南理工大学材料科学与工程学院,广州 510641;
2 国家人体组织功能重建工程技术研究中心,广州 510006
Advances in Hydrogel Materials Based on Cyclodextrin Derivatives
WANG Zhifang1,2, XUAN Chengkai1,2, LIU Xuemin1,2, SHI Xuetao1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641;
2 National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006
下载:  全 文 ( PDF ) ( 1554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水凝胶是一种由化学或物理交联的高分子聚合材料,具有亲水性的三维网络结构,使其能够吸收并保持大量的水分。水凝胶相对其他材料有着明显优势,其具有含水量高、性质柔软、通透性高、生物相容性好等优点,这些优异的性质使水凝胶在工业、农业、生物医学乃至生活中都有着广泛的应用。近些年来国内外研究者都致力于开发新型水凝胶,以解决传统水凝胶存在的力学强度差、功能单一的问题。因此,涌现了大批多功能、高强度的新型水凝胶,如温度、pH、光、电磁刺激响应性水凝胶,双网络、互穿网络水凝胶,纳米复合水凝胶,自愈合性水凝胶。
其中,环糊精及其衍生物的引入是改善水凝胶不足的重要方法之一。环糊精存在特殊的外缘亲水、内部疏水的环状分子结构以及疏水性空腔,能够通过主客体偶合作用稳定络合疏水性分子。近年来,研究者们充分利用环糊精独特的结构和性质,在设计更好的环糊精衍生物水凝胶结构和功能方面不断地进行尝试,取得了丰硕的研究成果,制备了一系列具有优异性能的环糊精及其衍生物高分子水凝胶。
环糊精及其衍生物水凝胶不仅在力学性能方面表现出优势,还具有显著的功能性,如刺激响应性、自修复性、形状记忆性、可注射性等。目前,已报道的环糊精衍生物水凝胶结构多样、性质各异,按其网络结构可分为:(1)化学修饰环糊精作为交联剂合成水凝胶;(2)环糊精衍生物的主客体超分子水凝胶;(3)环糊精衍生物的物理/化学双交联水凝胶;(4)环糊精衍生物的滑环水凝胶。各种交联结构的环糊精衍生物水凝胶的开发,赋予了水凝胶不同的功能和性质,为突破传统水凝胶的应用瓶颈提供了思路,使其在催化工程、药物控释、骨/软骨组织修复和水污染物净化领域具有广阔的应用前景。
本文归纳了环糊精衍生物高分子水凝胶的研究进展,按水凝胶的交联结构对环糊精衍生物水凝胶进行分类,分别对环糊精分子、环糊精衍生物水凝胶的结构、制备方法、应用等进行介绍,分析了环糊精衍生物高分子水凝胶所面临的问题并展望其前景,以期为制备多功能、高强度环糊精衍生物水凝胶提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志芳
宣承楷
刘雪敏
施雪涛
关键词:  环糊精衍生物  水凝胶  机械强度  多功能    
Abstract: Hydrogels are a kind of chemically or physically crosslinked polymer materials. The hydrophilic three-dimensional network structure endows hydrogels with the ability of absorbing and maintaining a large amount of water. Compared with other materials, hydrogels possess outstanding advantages including high water content, soft texture, excellent permeability and favorable biocompatibility, which enable the widespread application of hydrogels in industry, agriculture, biomedicine and even daily life. In recent years, researchers at home and abroad have devoted themselves to develop innovative hydrogels to overcome the poor mechanical strength and deficient function of traditional hydrogels. Therefore, numerous new hydrogels with multifunctional and high strength have emerged, such as temperature, pH, light, electromagnetic stimuli-responsive hydrogels, double networks, interpenetrating network hydrogels, nanocomposite hydrogels and self-healing hydrogel.
It is worth mentioning that the introduction of cyclodextrin and its derivatives is one of the important strategies to solve the deficiency of hydrogels. Cyclodextrin molecules contain special structure with hydrophilic outer rim, hydrophobic inner ring and hydrophobic cavities, which can accommodate hydrophobic molecules through host and guest interaction. In recent years, researchers have taken advantage of the unique structure and properties of cyclodextrins and intensive research endeavors have been put into designing cyclodextrin derivative hydrogels with superior structures and functions. And impressive strides have achieved that a series of cyclodextrin derivatives based hydrogels with excellent properties were developed.
Cyclodextrins derivatives based hydrogels not only show their superiority in terms of mechanical properties, but also have signi-ficant functions, like stimulus responsiveness, self-healing, shape memory, injectability, etc. Now, the reported cyclodextrin derivatives based hydrogels show diverse structures and various properties. They can be divided into four types according to their network structure: Ⅰ. mono-cyclodextrin crosslinked hydrogel; Ⅱ. host-guest supramolecular hydrogel; Ⅲ. cyclodextrin based double network hydrogel; Ⅳ. slide-ring hydrogel. The developments of cyclodextrin derivatives hydrogels with diverse cross-linked structures have create various functions and properties of hydrogels. Moreover, it provides a way to break through the bottlenecks of traditional hydrogels and broaden the application prospect in catalytic engineering, drug control release, bone/cartilage tissue repair and water pollutant purification.
This review offers a retrospection of the research efforts to cyclodextrin polymer hydrogels. Cyclodextrin derivative hydrogels are classified according to the cross-linked structure. And the elaboration about the structure, preparation and application of cyclodextrin molecules and cyclodextrin derivatives hydrogels are provided respectively. The problems and prospects of cyclodextrin derivatives hydrogels were analyzed in order to provide reference for the preparation of multifunctional, high-strength cyclodextrin derivatives hydrogels.
Key words:  cyclodextrin derivatives    hydrogels    mechanical strength    multifunctional
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TB324  
基金资助: 国家自然科学基金(51502095);广东省杰出青年基金(2016A030306018);广东省青年珠江学者项目
作者简介:  王志芳: 1993年生,硕士,主要研究方向为生物医用高分子材料 E-mail:mswzf@mail.scut.edu.cn; 施雪涛:通信作者,1982年生,博士,教授,主要研究方向为生物材料与组织工程 E-mail:shxt@scut.edu.cn;
引用本文:    
王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
WANG Zhifang, XUAN Chengkai, LIU Xuemin, SHI Xuetao. Advances in Hydrogel Materials Based on Cyclodextrin Derivatives. Materials Reports, 2018, 32(19): 3456-3464.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.020  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3456
1 Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review[J].Journal of Advanced Research,2015,6(2):105.
2 Dai X, Zhang Y, Gao L, et al. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel[J].Advanced Materials,2015,27(23):3566.
3 Yuk H, Lin S, Ma C, et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J].Nature Communications,2017,8:14230.
4 Nonoyama T, Wada S, Kiyama R, et al. Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration[J].Advanced Materials,2016,28(31):6740.
5 Plotkin L I, Mathov I, Aguirre J I, et al. Mechanical stimulation prevents osteocyte apoptosis: Requirement of integrins, Src kinases, and ERKs[J].American Journal of Physiology-Cell Physiology,2005,289(3):C633.
6 Chen Y, Pang X H, Dong C M. Dual stimuli-responsive supramole-cular polypeptide-based hydrogel and reverse micellar hydrogel media-ted by host-guest chemistry[J].Advanced Functional Materials,2010,20(4):579.
7 Hong W. Continuum models of stimuli-responsive gels[M].Berlin: Springer Berlin Heidelberg,2012:165.
8 Urban M W. Handbook of stimuli-responsive materials[M].Weinheim: Wiley-VCH,2011.
9 Harada A. Supramolecular polymer chemistry[J].Small,2011,6(24):2796.
10 Li Y, Li J, Zhao X, et al. Triterpenoid-based self-healing supramolecular polymer hydrogels formed by host-guest interactions[J].Chemistry,2016,22(51):18435.
11 Nakahata M, Takashima Y, Harada A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction[J].Macromolecular Rapid Communications,2016,37(1):86.
12 Yang Q, Wang P, Zhao C, et al. Light-switchable self-healing hydrogel based on host-guest macro-crosslinking[J].Macromolecular Rapid Communications,2017,38(6):1600741.
13 Takashima Y, Yonekura K, Koyanagi K, et al. Multifunctional stimuli-responsive supramolecular materials with stretching, coloring, and self-healing properties functionalized via host-guest interactions[J].Macromolecules,2017,50(11):4144.
14 Xuan H, Ren J, Zhang J, et al. Novel highly-flexible, acid-resistant and self-healing host-guest transparent multilayer films[J].Applied Surface Science,2017,411(31):303.
15 Xiao B, Lü S, Zhen C, et al. Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair[J].Chemical Engineering Journal,2016,288:546.
16 Wang X, Wang J, Yang Y, et al. Fabrication of multi-stimuli responsive supramolecular hydrogels based on host-guest inclusion complexation of a tadpole-shaped cyclodextrin derivative with the azobenzene dimer[J].Polymer Chemistry,2017,8:3901.
17 Li Z, Zhang Y, Wang H, et al. Mechanical behaviors of highly swollen supramolecular hydrogels mediated by pseudorotaxanes[J].Macromolecules,2017,50(3):1141.
18 Gao L, Sun Y, Zhang W, et al. Mechanical behavior of a terpolymer-based pH- and temperature-responsive hydrogel[J].Journal of Polymer Research,2015,22(11):221.
19 Lin Q, Yang Y, Hu Q, et al. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid deli-very[J].Acta Biomaterialia,2017,49:456.
20 Sheng J, Wang Y, Xiong L, et al. Injectable doxorubicin-loaded hydrogels based on dendron-like β-cyclodextrin-poly(ethylene glycol) conjugates[J].Polymer Chemistry,2017,8(10):1680.
21 Mateen R, Hoare T. Injectable, in situ gelling, cyclodextrin-dextran hydrogels for the partitioning-driven release of hydrophobic drugs[J].Journal of Materials Chemistry B,2014,2(32):5157.
22 Potier J, Menuel S, Monflier E, et al. Synergetic effect of randomly methylated β-cyclodextrin and a supramolecular hydrogel in Rh-catalyzed hydroformylation of higher olefins[J].ACS Catalysis,2014,4(7):2342.
23 Chevry M, Vanbésien T, Menuel S, et al. Tetronics/cyclodextrin-based hydrogels as catalyst-containing media for the hydroformylation of higher olefins[J].Catalysis Science & Technology,2017,7(1):114.
24 Xu X, Huang Z, Huang Z, et al. Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy[J].ACS Applied Materials & Interfaces,2017,9(24):20361.
25 Li R, Zhang X, Zhang Q, et al. β-cyclodextrin-conjugated hyaluronan hydrogel as a potential drug sustained delivery carrier for wound healing[J].Journal of Applied Polymer Science,2016,133(9):43072.
26 Wei K, Zhu M, Sun Y, et al. Robust biopolymeric supramolecular “host-guest macromer” hydrogels reinforced by in situ formed multivalent nanoclusters for cartilage regeneration[J].Macromolecules,2016,49(3):866.
27 Vega S L, Kwon M Y, Burdick J A. Recent advances in hydrogels for cartilage tissue engineering[J].European Cells & Materials,2017,33:59.
28 Liu Y, Huang S, Zhao X, et al. Fabrication of three-dimensional porous β-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,539:1.
29 Villiers A. Sur la fermentation de la fécule par l’action du ferment butyrique[J].Comptes rendus de l’Academie bulgare des Sciences,1891,112:536.
30 Schardinger F. ber thermophile Bakterien aus verschiedenen Spei-sen und Milch[J].Zeitschrift für Lebensmitteluntersuchung und-Forschung A,1903,6(19):865.
31 Schardinger F. Bildung kristallisierter polysaccharide (dextrine) aus st rkekleister durch microbe[J].Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt Ⅱ,1911,29:188.
32 Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications[J].International Journal of Pharmaceutics,2007,329(1):1.
33 Loethen S, Kim J M, Thompson D H. Biomedical applications of cyclodextrin based polyrotaxanes[J].Journal of Macromolecular Science, Part C: Polymer Reviews,2007,47(3):383.
34 Rekharsky M V, Inoue Y. Complexation thermodynamics of cyclodextrins[J].Chemical Reviews,1998,98(5):1875.
35 Loftsson T, Brewster M E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization[J].Journal of Pharmaceutical Sciences,1996,85(10):1017.
36 Hirose K J. Inclusion phenom[J].Macrocyclic Chemistry,2001,39:193.
37 Harries D, Rau D C, Parsegian V A. Solutes probe hydration in specific association of cyclodextrin and adamantine[J].Journal of the American Chemical Society,2005,127(7):2184.
38 Wenz G, Han B H, Müller A. Cyclodextrin rotaxanes and polyrota-xanes[J].Chemical Reviews,2006,106(3):782.
39 Huang Y, Wu R, Chu Y, et al. Effect of side chain of α-amino acids and esters on the stability constants for β-cyclodextrin complexes[J].Chemical Journal of Chinese Universities,2017,38(5):743.
40 Wang D, Jia M, Wang L, et al. Chitosan and β-cyclodextrin-epichlorohydrin polymer composite film as a plant healthcare material for carbendazim-controlled release to protect rape against sclerotinia sclerotiorum (Lib.) de bary[J].Materials,2017,10:343.
41 Chen Z, Wang T, Yan Q. Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen[J].Journal of Biomaterials Science, Polymer Edition,2018,29(3):309.
42 Park K H, Choi J M, Cho E, et al. Enhanced solubilization of fluoranthene by hydroxypropyl β-cyclodextrin oligomer for bioreme-diation[J].Polymers,2018,10(2):111.
43 Ghorpade V S, Yadav A V, Dias R J. Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs[J].Carbohydrate Polymers,2017,164:339.
44 Zhang Q T, Lang M D. Synthesis and characterization of β-cyclodextrin-centered star-shape seven-arm functionalized polycaprolactone and biotin modification[J].Materials Review,2016,30(S2):288(in Chinese).
张沁彤,郎美东.以环糊精为核的星形七臂官能化聚己内酯的制备与表征及生物素修饰[J].材料导报,2016,30(专辑28):288.
45 Zhang W, Jin X, Li H, et al. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release[J].Carbohydrate Polymers,2018,186:82.
46 Li J, Li X, Ni X, et al. Self-assembled supramole-cular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery[J].Biomaterials,2006,27(22):4132.
47 Zhang J, Ma P X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective[J].Advanced Drug Delivery Reviews,2013,65(9):1215.
48 Wang X, Wang C, Zhang Q, et al. Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery[J].Chemical Communications,2016,52(5):978.
49 Liu Y Y, Fan X D, Hu H, et al. Release of chlorambucil from poly (N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties[J].Macromolecular Bioscience,2004,4(8):729.
50 Marianecci C, Rinaldi F, Esposito S, et al. Niosomes encapsulating ibuprofen-cyclodextrin complexes: Preparation and characterization[J].Current Drug Targets,2013,14(9):1070.
51 Zhao H, Gao J, Liu R, et al. Stimulus-responsiveness and methyl violet release behaviors of poly(NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates[J].Carbohydrate Research,2016,428:79.
52 Karoyo A H, Wilson L D. Preparation and characterization of a polymer-based “Molecular accordion”[J].Langmuir,2016,32(12):3066.
53 Wang Y, Yang N, Wang D, et al. Poly(MAH-β-cyclodextrin-co-NIPAAm) hydrogels with drug hosting and thermo/pH-sensitive for controlled drug release[J].Polymer Degradation and Stability,2018,147:123.
54 Liu K L, Zhang Z, Li J. Supramolecular hydrogels based on cyclodextrin-polymer polypseudorotaxanes: Materials design and hydrogel properties[J].Soft Matter,2011,7(24):11290.
55 Ni X, Cheng A, Li J. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and α-cyclodextrin[J].Journal of Biomedical Materials Research Part A,2009,88(4):1031.
56 Tang P, Ma X, Wu D, et al. Posaconazole/hydroxypropyl-β-cyclodextrin host-guest system: Improving dissolution while maintaining antifungal activity[J].Carbohydrate Polymers,2016,142:16.
57 Hu Z, Wang C, Zhao F, et al. Fabrication of a graphene/C60 nanohybrid via γ-cyclodextrin host-guest chemistry for photodynamic and photothermal therapy[J].Nanoscale,2017,9(25):8825.
58 Kakuta T, Takashima Y, Nakahata M, et al. Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups[J].Advanced Materials,2013,25(20):2849.
59 Kakuta T, Takashima Y, Harada A. Highly elastic supramolecular hydrogels using host-guest Inclusion complexes with cyclodextrins[J].Macromolecules,2013,46(11):4575.
60 Huang H, Wang Y, Wang X, et al. Robust heterogeneous hydrogels with dynamic nanocrystal-polymer interface[J].Macromolecular Ra-pid Communications,2017,38(12):1600810.
61 Rodell C B, Kaminski A L, Burdick J A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels[J].Biomacromolecules,2013,14(11):4125.
62 Feng Q, Wei K, Lin S, et al. Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue rege-neration[J].Biomaterials,2016,101:217.
63 Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J].Advanced Materials,2003,15(14):1155.
64 Tan M, Cui Y, Zhu A, et al. Ultraductile, notch and stab resistant supramolecular hydrogels via host-guest interactions[J].Polymer Chemistry,2015,6(43):7543.
65 Rodell C B, Dusaj N N, Highley C B, et al. Injectable and cytocompatible tough double-network hydrogels through tandem supramole-cular and covalent crosslinking[J].Advanced Materials,2016,28(38):8419.
66 Highley C B, Rodell C B, Burdick J A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels[J].Advanced Mate-rials,2015,27(34):5075.
67 De Gennes P G. Sliding gels[J].Physica A: Statistical Mechanics and Its Applications,1999,271(3):231.
68 Okumura Y, Ito K. The polyrotaxane gel: A topological gel by fi-gure-of-eight cross-links[J].Advanced Materials,2001,13(7):485.
69 Ito K. Slide-ring materials using topological supramolecular architecture[J].Current Opinion in Solid State and Materials Science,2010,14(2):28.
70 Bin Imran A, Esaki K, Gotoh H, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network[J].Nature Communications,2014,5:5142.
71 Kali G, Eisenbarth H, Wenz G. One pot synthesis of a polyisoprene polyrotaxane and conversion to a slide-ring gel[J].Macromolecular Rapid Communications,2016,37(1):67.
72 Murakami T, Schmidt B V K J, Brown H R, et al. One-pot “Click” fabrication of slide-ring gels[J].Macromolecules,2015,48(21):7774.
73 Li X, Wang Y, Wu R, et al. Slide-ring shape memory polymers with movable cross-links[J].Reactive and Functional Polymers,2017,119:26.
74 Zhang J T, Keller T F, Bhat R, et al. A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release[J].Acta Biomaterialia,2010,6(10):3890.
75 Yang J, Han S, Yang L, et al. Synthesis of beta-cyclodextrin-grafted-alginate and its application for removing methylene blue from water solution[J].Journal of Chemical Technology and Biotechnology,2016,91(3):618.
[1] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[4] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[5] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[6] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[7] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[8] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[9] 胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
[10] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[11] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[12] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[13] 林皓, 胡家朋, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*[J]. 《材料导报》期刊社, 2017, 31(18): 55-58.
[14] 韩晓东, 张稳, 于坤, 贾庆明, 陕绍云, 苏红莹. 磁性水凝胶作为药物载体的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 30-35.
[15] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed