Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 41-46    https://doi.org/10.11896/j.issn.1005-023X.2017.010.009
  材料研究 |
羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*
王裕祥1,冯传良2
1 上海交通大学材料科学与工程学院金属基复合材料国家重点实验室, 上海200240;
2 上海交通大学材料科学与工程学院, 上海200240
Carboxyl-functionalized Carbon Nanotubes Reinforced Hybrid Supramolecular Hydrogel and Its Physical Properties
WANG Yuxiang1, FENG Chuanliang2
1 State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University,Shanghai 200240;
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过物理交联方法制备了含羧基化碳纳米管(CNTs-COOH)的杂化超分子水凝胶,采用透射电子显微镜(TEM)观察样品的微观形貌,探究了碳纳米管的引入对凝胶的溶胀性、凝胶-溶胶转变温度和力学性能的影响。结果显示,与初始纯凝胶相比,质量分数2.5%的碳纳米管的引入不但没有改变凝胶的初始形貌和微观结构,反而提高了其凝胶-溶胶转变温度,且凝胶的力学性能也明显得到增强。进一步研究表明,制备的杂化水凝胶依然具有超分子水凝胶的基本特性,特别是剪切变稀、温度响应性和自恢复特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王裕祥
冯传良
关键词:  超分子聚合物  碳纳米管  水凝胶  自组装  稳定性  溶胀性能  凝胶-溶胶转变温度  流变性能    
Abstract: Hybrid supramolecular hydrogels embedded with carboxyl-functionalized carbon nanotubes (CNTs-COOH) were obtained via physical cross-linking. Transmission electron microscopy (TEM) were used to observe the microstructure of the sample. The effect of the introduction of the CNTs-COOH on the swelling behavior, gel-sol transition temperature and mechanical property of the gel were detected. The results revealed that compared with the initial gel, the inclusion of the carbon nanotubes(2.5wt.%)had no impacts on the morphology and microstructure of the gel, but caused an increase of its gel-sol transition temperature, also an ob-vious enhancement of the mechanical properties of the hybrid hydrogels. In addition, the hybrid hydrogel still retained the basic cha-racteristics of the supramolecular hydrogel, especially the characteristics of shear thinning, temperature sensitivity and spontaneous recovery.
Key words:  supramolecular polymer    carbon nanotube    hydrogel    self-assembly    stability    swelling property    gel-sol transition temperature    rheological property
                    发布日期:  2018-05-08
ZTFLH:  TB34  
  O648.17  
基金资助: *国家自然科学基金(51573092;51273111)
通讯作者:  冯传良,男,1972年生,博士,教授,博士研究生导师,研究方向为超分子水凝胶及其生物应用E-mail:clfeng@sjtu.edu.cn   
作者简介:  王裕祥:男,1989年生,硕士研究生,研究方向为超分子水凝胶E-mail:wyx189327@163.com
引用本文:    
王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
WANG Yuxiang, FENG Chuanliang. Carboxyl-functionalized Carbon Nanotubes Reinforced Hybrid Supramolecular Hydrogel and Its Physical Properties. Materials Reports, 2017, 31(10): 41-46.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.009  或          http://www.mater-rep.com/CN/Y2017/V31/I10/41
1 Bennett S L, Melanson D A, Torchiana D F, et al. Next-generation hydrogel films as tissue sealants and adhesion barriers [J]. Card Surg,2003,18:494.
2 van Der Linden H, Herber S, Olthuis W, et al. Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis [J]. Analyst,2003,128:325.
3 Drury J L, Mooney D J. Hydrogels for tissue engineering: Scaffold design vari-ables and applications [J]. Biomaterials,2003,24(24):4337.
4 Oh J K, Drumright R, Siegwart D J, et al. The development of microgeld/nanogels for drug delivery applications [J]. Prog Polym Sci,2008,33:448.
5 Tang Y Q, Heaysman C L, Willis S, et al. Physical hydrogel with self-assembled nanostructure as drug delivery systems [J]. Expert Opin Drug Delivery,2011,8:1141
6 Ma R, Xiong D, Miao F, et al. Novel PVP/PVA hydrogels for articular cartilage replacement [J]. Mater Sci Eng C,2009,29(6):1979.
7 Bodugoz-Senturk H, Macias C, Kung J, et al. Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute [J]. Biomaterials,2009,30(4):589.
8 Hyland L L, Taraban M B, Feng Y, et al. Viscoelastic properties and nanoscale structures of composite oligopeptide-polysaccharide hydrogels [J]. Biopolymers,2012,97:177.
9 Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56.
10 Treacy M, Ebbesen T, Gibson J. Exceptionally high Yong’s modulus observed for individual nanotubes[J]. Nature,1996,381:678.
11 Liu X W, Huang Y X, Sun X F, et al. Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis [J]. ACS Appl Mater Interfaces,2014,6:8158.
12 Giuseppe C, Silke H, Umile G S, et al. Carbon nanotubes hybrid hydrogels in drug delivery:A perspective review; review article [J]. Biomed Res Int,2014,2014:226.
13 Ruchir V M, Wu X, Jeremy S, et al. Nanotubes in biological applications[J]. Curr Opin Biotechnol,2014,28:25.
14 Kong H, Gao C, Yan D Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization [J]. J Am Chem Soc,2004,126:412.
15 Edwards S, Werkmeister J, Ramshaw J. Carbon nanotubes in scaffolds for tissue engineering [J]. Expert Rev Med Devices,2009,6:499.
16 Saito N, Usui Y, Aoki K, et al. Carbon nanotubes: Biomaterial applications[J]. Chem Soc Rev,2009,38:1897.
17 Bryning M, Milkie D, Islam M, et al. Carbon nanotube aerogels[J]. Adv Mater,2007,19:661.
18 Ostojic G, Hersam M. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds [J]. Small,2012,8:1840.
19 Cheng E, Li Y, Yang Z, et al. DNA-SWNT hybrid hydrogel [J]. Chem Commun,2011,47:5545.
20 Sheikholeslam M, Pritzker M, Chen P. Hybrid peptide-carbon nanotube dispersions and hydrogels [J]. Carbon,2014,71:284.
21 Shin S, Jung S, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators [J]. ACS Nano,2013,7:2369.
22 Chen Y S, Tsou P C, Jem M L, et al. Poly(N-isop ropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engine erring [J]. Biomaterials,2013,34:7328.
23 Deep M, Tanmoy K, Prasanta K D. Pyrene-based fluorescent ambidextrous gelators:Scaffolds for mechanically robust SWNT-gel nanocomposites [J]. Chem Eur J,2014,20:1349.
24 Tomoki O, Yoshinori T, Hiroyasu Y, et al. Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (swnts) hydrogel made by hybrids of swnts and cyclodextrins [J]. J Am Chem Soc,2007,129:4878.
25 Coleman J, Khan U, Blau W, et al. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006,44(9):1624.
26 Liu L Q, Barber A, Nuriel S, et al. Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites [J]. Adv Funct Mater,2005,15(6):975.
27 Su R S, Hojae B, Jae M C, et al. Carbon nanotube reinforced hybrid microgels as scaff old materials for cell encapsulation [J]. ACS Nano,2012,6:362.
28 Ferris C, Panhuis M I H. Conducting bio-materials based on gellan gum hydrogels [J]. Soft Matter,2009,5:3430.
29 Miyako E, Nagata H, Hirano K, et al. Micropatterned carbon nanotube-gel composite as photothermal material [J].Adv Mater,2009,21:2819.
30 Miyako E, Nagata H, Hirano K, et al. Photodynamic thermoresponsive nanocarbon-polymer gel hybrids [J]. Small,2008,4:1711.
31 Fujigaya T, Morimoto T, Nakashima N. Isolated single-walled carbon nanotubes in a gel as a molecular reservoir and its application to controlled drug release triggered by near-IR laser irradiation [J]. Soft Matter,2011,7:2647.
32 Smart S, Cassady A, Lu G Q, et al. The biocompatibility of carbon nanotubes [J]. Carbon,2006,44(6):1034.
32 Pantarotto D, Briand J, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes [J]. Chem Commun,2004,1:16.
34 Lu G, Moore J, Huang G, et al. RNA polymer translocation with single-walled carbon nanotubes [J]. Nano Lett,2004,4(12):2473.
35 Feng C L, Dou X Q, Zhang D, et al. A highly efficient self-assembly of responsive c2-cyclohexane-derived gelators [J]. Macromol Rapid Commun,2012,33:1535.
36 Huang R L, Qi W, Feng L B, et al. Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery [J]. Soft Matter,2011,7:6222.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[3] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[4] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[5] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[6] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[7] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[8] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[9] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[10] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[11] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[12] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[13] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[14] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[15] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed