Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 41-46    https://doi.org/10.11896/j.issn.1005-023X.2017.010.009
  材料研究 |
羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*
王裕祥1,冯传良2
1 上海交通大学材料科学与工程学院金属基复合材料国家重点实验室, 上海200240;
2 上海交通大学材料科学与工程学院, 上海200240
Carboxyl-functionalized Carbon Nanotubes Reinforced Hybrid Supramolecular Hydrogel and Its Physical Properties
WANG Yuxiang1, FENG Chuanliang2
1 State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University,Shanghai 200240;
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过物理交联方法制备了含羧基化碳纳米管(CNTs-COOH)的杂化超分子水凝胶,采用透射电子显微镜(TEM)观察样品的微观形貌,探究了碳纳米管的引入对凝胶的溶胀性、凝胶-溶胶转变温度和力学性能的影响。结果显示,与初始纯凝胶相比,质量分数2.5%的碳纳米管的引入不但没有改变凝胶的初始形貌和微观结构,反而提高了其凝胶-溶胶转变温度,且凝胶的力学性能也明显得到增强。进一步研究表明,制备的杂化水凝胶依然具有超分子水凝胶的基本特性,特别是剪切变稀、温度响应性和自恢复特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王裕祥
冯传良
关键词:  超分子聚合物  碳纳米管  水凝胶  自组装  稳定性  溶胀性能  凝胶-溶胶转变温度  流变性能    
Abstract: Hybrid supramolecular hydrogels embedded with carboxyl-functionalized carbon nanotubes (CNTs-COOH) were obtained via physical cross-linking. Transmission electron microscopy (TEM) were used to observe the microstructure of the sample. The effect of the introduction of the CNTs-COOH on the swelling behavior, gel-sol transition temperature and mechanical property of the gel were detected. The results revealed that compared with the initial gel, the inclusion of the carbon nanotubes(2.5wt.%)had no impacts on the morphology and microstructure of the gel, but caused an increase of its gel-sol transition temperature, also an ob-vious enhancement of the mechanical properties of the hybrid hydrogels. In addition, the hybrid hydrogel still retained the basic cha-racteristics of the supramolecular hydrogel, especially the characteristics of shear thinning, temperature sensitivity and spontaneous recovery.
Key words:  supramolecular polymer    carbon nanotube    hydrogel    self-assembly    stability    swelling property    gel-sol transition temperature    rheological property
发布日期:  2018-05-08
ZTFLH:  TB34  
  O648.17  
基金资助: *国家自然科学基金(51573092;51273111)
通讯作者:  冯传良,男,1972年生,博士,教授,博士研究生导师,研究方向为超分子水凝胶及其生物应用E-mail:clfeng@sjtu.edu.cn   
作者简介:  王裕祥:男,1989年生,硕士研究生,研究方向为超分子水凝胶E-mail:wyx189327@163.com
引用本文:    
王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
WANG Yuxiang, FENG Chuanliang. Carboxyl-functionalized Carbon Nanotubes Reinforced Hybrid Supramolecular Hydrogel and Its Physical Properties. Materials Reports, 2017, 31(10): 41-46.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.009  或          https://www.mater-rep.com/CN/Y2017/V31/I10/41
1 Bennett S L, Melanson D A, Torchiana D F, et al. Next-generation hydrogel films as tissue sealants and adhesion barriers [J]. Card Surg,2003,18:494.
2 van Der Linden H, Herber S, Olthuis W, et al. Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis [J]. Analyst,2003,128:325.
3 Drury J L, Mooney D J. Hydrogels for tissue engineering: Scaffold design vari-ables and applications [J]. Biomaterials,2003,24(24):4337.
4 Oh J K, Drumright R, Siegwart D J, et al. The development of microgeld/nanogels for drug delivery applications [J]. Prog Polym Sci,2008,33:448.
5 Tang Y Q, Heaysman C L, Willis S, et al. Physical hydrogel with self-assembled nanostructure as drug delivery systems [J]. Expert Opin Drug Delivery,2011,8:1141
6 Ma R, Xiong D, Miao F, et al. Novel PVP/PVA hydrogels for articular cartilage replacement [J]. Mater Sci Eng C,2009,29(6):1979.
7 Bodugoz-Senturk H, Macias C, Kung J, et al. Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute [J]. Biomaterials,2009,30(4):589.
8 Hyland L L, Taraban M B, Feng Y, et al. Viscoelastic properties and nanoscale structures of composite oligopeptide-polysaccharide hydrogels [J]. Biopolymers,2012,97:177.
9 Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56.
10 Treacy M, Ebbesen T, Gibson J. Exceptionally high Yong’s modulus observed for individual nanotubes[J]. Nature,1996,381:678.
11 Liu X W, Huang Y X, Sun X F, et al. Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis [J]. ACS Appl Mater Interfaces,2014,6:8158.
12 Giuseppe C, Silke H, Umile G S, et al. Carbon nanotubes hybrid hydrogels in drug delivery:A perspective review; review article [J]. Biomed Res Int,2014,2014:226.
13 Ruchir V M, Wu X, Jeremy S, et al. Nanotubes in biological applications[J]. Curr Opin Biotechnol,2014,28:25.
14 Kong H, Gao C, Yan D Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization [J]. J Am Chem Soc,2004,126:412.
15 Edwards S, Werkmeister J, Ramshaw J. Carbon nanotubes in scaffolds for tissue engineering [J]. Expert Rev Med Devices,2009,6:499.
16 Saito N, Usui Y, Aoki K, et al. Carbon nanotubes: Biomaterial applications[J]. Chem Soc Rev,2009,38:1897.
17 Bryning M, Milkie D, Islam M, et al. Carbon nanotube aerogels[J]. Adv Mater,2007,19:661.
18 Ostojic G, Hersam M. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds [J]. Small,2012,8:1840.
19 Cheng E, Li Y, Yang Z, et al. DNA-SWNT hybrid hydrogel [J]. Chem Commun,2011,47:5545.
20 Sheikholeslam M, Pritzker M, Chen P. Hybrid peptide-carbon nanotube dispersions and hydrogels [J]. Carbon,2014,71:284.
21 Shin S, Jung S, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators [J]. ACS Nano,2013,7:2369.
22 Chen Y S, Tsou P C, Jem M L, et al. Poly(N-isop ropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engine erring [J]. Biomaterials,2013,34:7328.
23 Deep M, Tanmoy K, Prasanta K D. Pyrene-based fluorescent ambidextrous gelators:Scaffolds for mechanically robust SWNT-gel nanocomposites [J]. Chem Eur J,2014,20:1349.
24 Tomoki O, Yoshinori T, Hiroyasu Y, et al. Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (swnts) hydrogel made by hybrids of swnts and cyclodextrins [J]. J Am Chem Soc,2007,129:4878.
25 Coleman J, Khan U, Blau W, et al. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon,2006,44(9):1624.
26 Liu L Q, Barber A, Nuriel S, et al. Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites [J]. Adv Funct Mater,2005,15(6):975.
27 Su R S, Hojae B, Jae M C, et al. Carbon nanotube reinforced hybrid microgels as scaff old materials for cell encapsulation [J]. ACS Nano,2012,6:362.
28 Ferris C, Panhuis M I H. Conducting bio-materials based on gellan gum hydrogels [J]. Soft Matter,2009,5:3430.
29 Miyako E, Nagata H, Hirano K, et al. Micropatterned carbon nanotube-gel composite as photothermal material [J].Adv Mater,2009,21:2819.
30 Miyako E, Nagata H, Hirano K, et al. Photodynamic thermoresponsive nanocarbon-polymer gel hybrids [J]. Small,2008,4:1711.
31 Fujigaya T, Morimoto T, Nakashima N. Isolated single-walled carbon nanotubes in a gel as a molecular reservoir and its application to controlled drug release triggered by near-IR laser irradiation [J]. Soft Matter,2011,7:2647.
32 Smart S, Cassady A, Lu G Q, et al. The biocompatibility of carbon nanotubes [J]. Carbon,2006,44(6):1034.
32 Pantarotto D, Briand J, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes [J]. Chem Commun,2004,1:16.
34 Lu G, Moore J, Huang G, et al. RNA polymer translocation with single-walled carbon nanotubes [J]. Nano Lett,2004,4(12):2473.
35 Feng C L, Dou X Q, Zhang D, et al. A highly efficient self-assembly of responsive c2-cyclohexane-derived gelators [J]. Macromol Rapid Commun,2012,33:1535.
36 Huang R L, Qi W, Feng L B, et al. Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery [J]. Soft Matter,2011,7:6222.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[3] 薛敏, 芦卓妍, 俞露露, 丁瑶, 陈茎. 基于芳香羧酸配体的有机凝胶、金属凝胶的制备及流变性能[J]. 材料导报, 2025, 39(3): 23090162-6.
[4] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[5] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[6] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[9] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[10] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[11] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[12] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[13] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[14] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[15] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed