Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22050070-8    https://doi.org/10.11896/cldb.22050070
  金属与金属基复合材料 |
非晶合金中剪切温升的研究进展
李娇娇1,*, 范婧2, 王重3
1 中北大学先进制造技术山西省重点实验室,太原 030051
2 中北大学材料科学与工程学院,太原 030051
3 太原理工大学机械与运载工程学院,太原 030051
A Brief Overview of Temperature Rises During Shear Banding in Bulk Metallic Glasses
LI Jiaojiao1,*, FAN Jing2, WANG Zhong3
1 Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
2 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
3 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030051, China
下载:  全 文 ( PDF ) ( 13987KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 区别于传统的晶态金属材料,非晶合金(BMGs)不具备长程有序结构,其塑性变形载体为剪切带。剪切带一旦形成,便很快发展成为裂纹,引发材料的灾难性断裂。剪切不稳定性的研究有助于非晶合金塑性变形机理的理解,并可为非晶合金塑性变形能力的提高提供设计思路。近年来,基于非晶合金的结构特点,科研工作者努力探究非晶合金的剪切不稳定性,主要提出了结构软化诱导的剪切不稳定性和热软化引发的剪切不稳定性两种机制。本文重点总结了非晶合金中剪切温升的研究进展,介绍了测试应变速率、外部约束、试验机刚度和测试温度对剪切温升的影响,指明非晶合金中剪切引入的热远低于玻璃转变温度,暗示热软化对剪切不稳定性的影响是微弱的。本文最后对非晶合金中剪切不稳定性机制的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娇娇
范婧
王重
关键词:  非晶合金  剪切不稳定性  剪切温升  锯齿流变  热软化    
Abstract: Bulk metallic glasses (BMGs) possess amorphous structure that lacks long-range orders. In contrast to crystal metals, shear banding is ge-nerally believed to be a common plastic deformation mode at temperatures far below glass transition temperature for monolithic BMGs. While shear bands can accommodate some plastic strain, they would evolve into cracks to cause the catastrophic fracture of BMG samples. The investigation of shear-banding instability contributes to the understanding of plastic deformation mechanisms and further provides insights on strategies for improving the plastic deformation capability of BMGs. It is reported that structural softening and thermal softening are two potential origins of shear-banding instability in BMGs. In this review, we summarize the investigations on the shear heating mainly from four aspects, including temperature rises depending on testing strain rates, the external confinement, testing-machine stiffnesses, and testing temperatures. Finally, we discuss some key issues on the investigation of temperature rises and provide research topics for understanding shear-banding instability.
Key words:  bulk metallic glasses    shear-banding instability    temperature rises    serrated flows    thermal softening
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O75  
基金资助: 山西省基础研究计划(20210302124098);中北大学先进制造技术山西省重点实验室开放基金(XJZZ202204)
通讯作者:  *李娇娇,中北大学机械工程学院讲师,2014年6月于山东交通学院材料成型及控制工程本科毕业,2020年6月于太原理工大学材料科学与工程专业博士毕业,2020年7月于中北大学工作至今。目前从事非晶合金及晶态金属材料中锯齿流变行为的研究工作。自2014年至今,以第一作者身份在学术期刊Materials and Design、Jounal of Alloys and Compounds、Intemetallics等发表论文4篇。lijiaojiao1004@gmail.com   
引用本文:    
李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
LI Jiaojiao, FAN Jing, WANG Zhong. A Brief Overview of Temperature Rises During Shear Banding in Bulk Metallic Glasses. Materials Reports, 2024, 38(8): 22050070-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050070  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22050070
1 Cheng Y Q, Ma E. Progress in Materials Science, 2011, 56, 379.
2 Wang J F, Li R, Hua N B, et al. Journal of Materials Research, 2011, 26(16), 2072.
3 Jiang H, Shang T, Xian H, et al. Small Structures, 2020, 2, 2000057.
4 Miracle D B. The Journal of the Minerals, Metals & Materials Society, 2012, 64, 846.
5 Ding J, Patinet S, Falk M L, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14052.
6 Hufnagel T C, Schuh C A, Falk M L. Acta Materialia, 2016, 109, 375.
7 Guan P F, Wang B, Wu Y C, et al. Acta Physica Sinica, 2017, 66, 176112.
8 Im S, Chen Z, Johnson J M, et al. Microscopy and Microanalysis, 2018, 24, 202.
9 Spaepen F. Acta Matallurgica, 1977, 25, 407.
10 Argon A S. Acta Matallurgica, 1979, 27, 47.
11 Langer M L, Falk J S. Physical Review E, 1998, 57, 7192.
12 Johnson W L, Samwer K. Physical Review Letters, 2005, 95, 1995501.
13 Jiang M Q, Dai L H. Journal of the Mechanics and Physics of Solids, 2009, 57, 1267.
14 Maaß R, Löffler J F. Advanced Functional Materials, 2015, 25, 2353.
15 Liu C, Roddatis V, Kenesei P, et al. Acta Materialia, 2017, 140, 206.
16 Klaumünzer D, Maaß R, Löffler J F. Journal of Materials Research, 2011, 26, 1453.
17 Lewandowski J J, Greer A L. Nature Materials, 2005, 5, 15.
18 Slaughter S K, Kertis F, Deda E, et al. APL Materials, 2014, 2, 096110.
19 Sun B A, Pauly S, Tan J, et al. Acta Materialia, 2012, 60, 4160.
20 Jiang W, Fan G, Liu F, et al. International Journal of Plasticity, 2008, 24, 1.
21 Antonaglia J, Xie X, Schwarz G, et al. Scientific Reports, 2014, 4, 4382.
22 Li J J, Wang Z, Qiao J W. Materials & Design, 2016, 99, 427.
23 Luo Y S, Li J J, Wang Z, et al. Journal of Alloys and Compounds, 2021, 864, 158107.
24 Li J J, Fan J F, Wang Z, et al. Intermetallics, 2020, 116, 106637.
25 Wang J G, Pan Y, Song S X, et al. Materials Science and Engineering A, 2016, 651, 321.
26 Wright W J, Ricardo B S, William D N. Materials Science and Enginee-ring A, 2001, 319-321, 229.
27 Wright W J, Samale M W, Hufnagel T C, et al. Acta Materialia, 2009, 57, 4639.
28 Qu R T, Liu Z Q, Wang G, et al. Acta Materialia, 2015, 91, 19.
29 Antonaglia J, Wright W J, Gu X, et al. Physical Review Letters, 2014, 112, 155501.
30 Wright W J, Byer R R, Gu X. Applied Physics Letters, 2013, 102, 241920.
31 Cao P, Dahmen K A, Kushima A, et al. Journal of the Mechanics and Physics of Solids, 2018, 114, 158.
32 Qu R T, Wu S J, Wang S G, et al. Journal of the Mechanics and Physics of Solids, 2020, 138, 103922.
33 Zhang Z F, Zhang H, Pan X F, et al. Philosophical Magazine Letters, 2005, 85, 513.
34 Qu R T, Wang S G, Li G J, et al. Scripta Materialia, 2019, 162, 136.
35 Hu J, Sun B A, Yang Y, et al. Intermetallics, 2015, 66, 31.
36 Han Z, Wu W F, Li Y, et al. Acta Materialia, 2009, 57, 1367.
37 Thurnheer P, Maaß R, Laws K J, et al. Acta Materialia, 2015, 96, 428.
38 Thurnheer P. Dynamics and temperature of shear banding in metallic glasses. Ph.D. Thesis, ETH Zurich, Switzerland, 2016.
39 Maaß R, Klaumünzer D, Löffler J F. Acta Materialia, 2011, 59, 3205.
40 Leamy H L, Chen H S, Wang T T. Metallurgical Transactions, 1972, 3, 699.
41 Georgarakis K, Aljerf M, Li Y, et al. Applied Physics Letters, 2008, 93, 031907.
42 Thurnheer P, Haag F, Löffler J F. Acta Materialia, 2016, 115, 468.
43 Xie X, Lo Y C, Tong Y, et al. Journal of the Mechanics and Physics of Solids, 2019, 124, 634.
[1] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[2] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[3] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[4] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[5] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[6] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[7] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[8] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[9] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[10] 马娅娅, 李强, 穆保霞, 马旭. 铁含量对Fe-P-C非晶合金降解亚甲基蓝性能的影响[J]. 材料导报, 2021, 35(21): 21085-21090.
[11] 梁秀兵, 周志丹, 张志彬, 程江波, 陈永雄. 铝基非晶材料研究与再制造应用前景[J]. 材料导报, 2021, 35(1): 1003-1010.
[12] 张香云, 杜进英, 袁子洲, 李金祺. Fe-Si-B非晶合金对溶液中Cu (Ⅱ)的去除效率[J]. 材料导报, 2020, 34(7): 7010-7014.
[13] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[14] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[15] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed