Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22030269-6    https://doi.org/10.11896/cldb.22030269
  无机非金属及其复合材料 |
水泥基材料中Ca2+对矿化微生物的碳酸酐酶产量、活性和矿化的影响
张俊杰1,2,3,4, 陈燕强1,2,3,4, 钱春香1,2,3,4,*
1 东南大学材料科学与工程学院,南京 211189
2 东南大学绿色建材与固碳研究中心,南京 211189
3 中国建筑行业微生物矿化技术重点实验室,南京 211189
4 东南大学江苏省土木工程材料重点实验室,南京 211189
Effects of Ca2+ in Cement-based Materials on the Yield, Activity and Mineralization of Carbonic Anhydrase of Mineralized Microorganism
ZHANG Junjie1,2,3,4, CHEN Yanqiang1,2,3,4, QIAN Chunxiang,1,2,3,4,*
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Research Center of Green Construction Materials & Carbon Utilization, Southeast University, Nanjing 211189, China
3 Key Laboratory of Microbial Bio-mineralization, China Building Industry, Nanjing 211189, China
4 Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 7714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对一种适用于水泥基材料的耐碱矿化微生物,研究了水泥基材料中Ca2+浓度变化(0~5 mmol/L)对矿化微生物的产酶量、碳酸酐酶活性以及诱导CaCO3矿化能力的影响。对分离纯化不同Ca2+浓度菌液中的碳酸酐酶进行酶产量测定,并通过测定矿化微生物的细菌生长曲线和单菌产酶量分析Ca2+浓度对其的影响机理;基于酯酶法测定不同Ca2+浓度下碳酸酐酶的活性,并利用FTIR测定官能团,分析二级结构变化和氢键变化,进而得到Ca2+浓度对碳酸酐酶活性的影响机理;最后基于热重分析不同Ca2+浓度溶液中矿化微生物的诱导矿化能力,并测定矿化产物晶形。试验结果表明,当Ca2+浓度为2.5 mmol/L时,矿化微生物生长增殖最快,单菌产酶量最高,因此整体酶产量最高;碳酸酐酶活性在Ca2+浓度为5 mmol/L时达到最大值,但Ca2+会破坏碳酸酐酶结构的有序性;当Ca2+浓度为5 mmol/L时,矿化微生物的诱导矿化能力最强,矿化3 d后Ca(OH)2向CaCO3的转化率达到82.67%,且得到的CaCO3晶体形貌主要为球状或椭圆状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张俊杰
陈燕强
钱春香
关键词:  矿化微生物  碳酸酐酶  酶产量  酶活性  诱导矿化    
Abstract: Aiming at an alkali resistant mineralized microorganism suitable for cement-based materials, this work studied the effects of Ca2+ concentration change (0—5 mmol/L) in cement-based materials on the enzyme production, carbonic anhydrase activity and the ability to induce CaCO3 mineralization of mineralized microorganisms. The carbonic anhydrase in bacterial solution with different Ca2+ concentration was isolated and purified, and the enzyme yield was determined. The influence mechanism of Ca2+ was analyzed by measuring the OD600 curve of mineralized microorganism and the enzyme yield of single bacterium;the carbonic anhydrase activity under different Ca2+ concentrations was determined by the esterase method, and the functional groups were determined by FTIR. The changes of secondary structure and hydrogen bond were analyzed, and the influence mechanism on the activity was obtained;finally, the mineralization inducing ability of mineralizing microorganisms in different Ca2+ concentration solutions was analyzed based on TG, and the crystal form of mineralized products was determined. The test results show that when the concentration of Ca2+ was 2.5 mmol/L, the mineralized microorganisms grew and proliferated the fastest and the enzyme yield of a single bacterium was also the highest, so the overall enzyme production was the highest. The activity of anhydrase reached the maximum when the concentration of Ca2+ was 5 mmol/L, but Ca2+ would destroy the structural of carbonic anhydrase;the mineralizing microorganism has the strongest ability to induce mineralization in 5 mmol/L. After 3 d of mineralization, the conversion rate of Ca(OH)2 to CaCO3 reached 82.67%, and the morphology of CaCO3 crystal was mainly spherical or elliptical.
Key words:  mineralized microorganism    carbonic anhydrase    enzyme yield    enzyme activity    induce mineralization
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TU502  
基金资助: 国家自然科学基金(51738003)
通讯作者:  *钱春香,东南大学首席教授、博士研究生导师,国务院政府特殊津贴专家,国家科技进步奖获得者,东南大学绿色建材与固碳利用研究中心主任,中国建筑材料行业微生物矿化技术重点实验室主任,国家“十四五”重点研发计划项目首席科学家。1992年南京化工学院博士毕业(师从唐明述院士),之后进入东南大学工作。目前主要从事混凝土体积稳定性和裂缝防治理论、技术与工程应用研究,在我国开拓了建筑材料微生物技术研究方向,并深度耦合碳中和利用、低碳胶凝材料、结构-功能一体化水泥基复合材料等研究。已发表学术论文300余篇,授权发明专利40多项。cxqianseu1@163.com   
作者简介:  张俊杰,2022年6月毕业于东南大学,获得工学硕士学位。主要研究领域为微生物自修复水泥基材料。
引用本文:    
张俊杰, 陈燕强, 钱春香. 水泥基材料中Ca2+对矿化微生物的碳酸酐酶产量、活性和矿化的影响[J]. 材料导报, 2024, 38(8): 22030269-6.
ZHANG Junjie, CHEN Yanqiang, QIAN Chunxiang. Effects of Ca2+ in Cement-based Materials on the Yield, Activity and Mineralization of Carbonic Anhydrase of Mineralized Microorganism. Materials Reports, 2024, 38(8): 22030269-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22030269  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22030269
1 De Muynck W, De Belie N, Verstraete W. Ecological Engineering, 2010, 36(2), 118.
2 Qian C X, Ren L F, Xue B, et al. Construction & Building Materials, 2016, 106, 126.
3 Combs J E, Andring J T, Mckenna R. Methods in Enzymology, 2020, 634, 281.
4 Meldrum N U, Roughton F J. The Journal of Physiology, 1933, 80(2), 113.
5 Schneider J, Campion-Alsumard T L. European Journal of Phycology, 1999, 34(4), 417.
6 Bosak T, Greene S E, Newman D K. Geobiology, 2010, 5(2), 119.
7 De Muynck W, Cox K, De Belle N. Construction & Building Materials, 2008, 22(5), 875.
8 Dejong J T, Mortensen B M, Martinez B C, et al. Ecological Enginee-ring, 2010, 36(2), 197.
9 Aloisi G, Gloter A, Krüger M, et al. Geology, 2006, 34(12), 1017.
10 Hammes F, Boon N, de V J, et al. Applied & Environmental Microbiology, 2003, 69(8), 4901.
11 Qian C X, Ren L F. Journal of the Chinese Ceramic Society, 2014, 42(11), 1389.
12 Qian C X, Luo M, Ren L F, et al. Key Engineering Materials, 2014, 629, 494.
13 Zheng T, Qian C. Journal of Materials in Civil Engineering, 2020, 32(11), 04020341.
14 Su Y, Feng J, Jin P, et al. Construction & Building Materials, 2019, 218, 224.
15 Yi H, Qian C X. Science of Advanced Materials, 2020, 12(5), 760.
16 Dejong J T, Fritzges M B, Nüsslein K. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11), 1381.
17 Favre N, Christ M L, Pierre A C. Journal of Molecular Catalysis B Enzymatic, 2009, 60(3-4), 163.
18 Sonia D, Prete D, Vullo V, et al. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29(6), 906.
19 Iverson T M, Alber B E, Kisker C, et al. Biochemistry, 2000, 39(31), 9222.
20 Kikutani S, Nakajima K, Nagasato C, et al. Proceedings of the National Academy of Sciences, 2016, 113(35), 9828.
21 Xu Y, Feng L, Jeffrey P D, et al. Nature, 2008, 452(7183), 56.
22 Sharma T, Kumar A. Environmental Engineering Research, 2021, 26(3), 200191-0.
23 Sundaram S, Thakur I S. Bioresource Technology, 2018, 253, 368.
24 Chen W S. Study on kinetics and morphology of calcium carbonate precipitation catalyzed by bacterial carbonic anhydrase. Master’s Thesis, Huazhong University of Science and Technology, China, 2011(in Chinese).
陈薇珊. 细菌碳酸酐酶催化碳酸钙沉积的动力学和形态学研究. 硕士学位论文, 华中科技大学, 2011.
25 Zhou Z R, Shu Z Y, Li W J, et al. Marine Fisheries, 2017, 39(1), 76(in Chinese).
周子睿, 施志仪, 李文娟, 等. 海洋渔业, 2017, 39(1), 76.
26 Verpoorte J A, Mehta S J, Edsall J T. Journal of Biological Chemistry, 1967, 242(18), 4221.
27 Jackson M, Mantsch H H. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(2), 95.
28 Carrasquillo M K G. Structure-guided encapsulation of model proteins into biocompatible polymers. Ph. D. Thesis, University of Puerto Rico, USA, 2001.
29 Wang Q W, Yang Y H, Gao H B. Hydrogen bonding problems in orga-nic chemistry, Tianjin University Press, China, 1993, pp.243(in Chinese).
王庆文, 杨玉桓, 高鸿宾. 有机化学中的氢键问题, 天津大学出版社, 1993, pp.243.
[1] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[2] 昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
[3] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[4] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed