Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23040018-8    https://doi.org/10.11896/cldb.23040018
  无机非金属及其复合材料 |
纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究
李爽, 黄明*, 崔明娟, 胡鑫杭, 许凯, 姜启武
福州大学土木工程学院,福州 350108
Study on the Effect and the Mechanism of Nano-Fe3O4 on Microbially Induced Calcium Carbonate Precipitation
LI Shuang, HUANG Ming*, CUI Mingjuan, HU Xinhang, XU Kai, JIANG Qiwu
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 4058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物诱导碳酸钙沉淀(MICP)是环境岩土工程领域一项新型的土体加固技术。微生物的生长及活性会受到外部磁场的影响,改变MICP中碳酸钙的晶型晶貌及沉淀方式,从而对碳酸钙的胶结性能产生影响。采用纳米四氧化三铁(Nano-Fe3O4),设计了Nano-Fe3O4作用下的微生物诱导碳酸钙沉淀的水溶液及MICP砂土固化试验,对比分析了Nano-Fe3O4含量对微生物诱导生成的碳酸钙晶体含量(CCC)、类型、比例以及MICP固化砂土力学强度等参数的影响规律,并结合扫描电镜(SEM)试验分析了溶液环境及砂柱中碳酸钙的微观形貌特征,系统归纳了Nano-Fe3O4对MICP的作用效果及机制。结果表明:(1)Nano-Fe3O4能够有效改善细菌的新陈代谢性能,显著提高细菌OD600及脲酶活性;(2)溶液环境中,MICP产生的碳酸钙晶体类型以球霰石为主,含少量方解石,且Nano-Fe3O4含量增加能够促进球霰石的生成及增大MICP沉淀物中稳定相碳酸钙所占的比例;(3)Nano-Fe3O4可以显著提高MICP固化砂土的无侧限抗压强度和CCC;(4)SEM分析结果表明,溶液环境中,碳酸钙晶体以球型堆积为主,MICP固化砂柱中碳酸钙晶型随Nano-Fe3O4含量的增加逐渐呈菱柱状堆积。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李爽
黄明
崔明娟
胡鑫杭
许凯
姜启武
关键词:  微生物诱导碳酸钙沉淀(MICP)  纳米四氧化三铁  晶体类型与形貌  细菌脲酶活性  溶液环境  MICP固化砂土    
Abstract: Microbially induced carbonate precipitation (MICP) is a promising technique in geoenvironmental engineering. The metabolic activity of bacteria is sensitive to external magnetic fields, which will affect the CaCO3 crystal morphology. Therefore, nano-Fe3O4 was utilized to investigate the influence of magnetic materials on MICP. Both MICP in solution environment and MICP on a quartz sand surface were investigated with different nano-Fe3O4 content. The calcium carbonate content (CCC), crystal types and unconfined compressive strength were analyzed by scanning electron microscope (SEM) and uniaxial compression test. Furthermore, a series of tests were conducted to reveal the mechanism of the effect of nano-Fe3O4 on MICP. The results showed that the optical density at 600 nm of bacteria (OD600) and bacterial activity increased with an increase in nano-Fe3O4 content. In the solution environment, the crystal type of CaCO3 was primarily vaterite, with little calcite, and it was confirmed by TG-DTA testing that nano-Fe3O4 could facilitate the formation of vaterite. Additionally, the unconfined compressive strength (UCS) and calcium carbonate content of MICP-treated sand increased with an increase in nano-Fe3O4 content. Interestingly, CaCO3 presented in the form of spheres in the solution environment, while it was in the form of rhomboid imbricate on the surface of quartz sand particles.
Key words:  microbially induced carbonate precipitation (MICP)    nano-Fe3O4    crystal type and morphology    bacterial urease activity    solution environment    MICP-treated sand
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TU526  
基金资助: 国家自然科学基金(41972276;52108307;52378392);福建省自然科学基金(2020J06013);福建省“雏鹰计划”青年拔尖人才项目(00387088);福州大学“旗山学者”项目(XRC-22015)
通讯作者:  * 黄明,国家级青年人才,福州大学土木工程学院教授、岩土工程研究所所长、博士研究生导师。博士毕业于重庆大学,2010年至今就职于福州大学土木工程学院。目前主要从事:(1)微生物岩土工程的理论基础与技术开发;(2)盾构渣土改良及渣土再利用技术研究;(3)城市地铁盾构/TBM隧道掘进稳定性计算与安全控制;(4)复杂环境下隧道动态施工力学效应分析与灾害防治。主持国家自然科学基金项目4项,参与1项(排名3),省部级课题6项,获省部级科技进步奖5项。发表国内外高水平论文80余篇,其中SCI/EI收录50余篇,授权国家专利20余项,包括Tunnelling and Underground Space Technology、Rock Mechanics and Rock Engineering、Journal of Rock Mechanics and Geotechnical Engineering、Acta Geotechnica、Journal of Geotechnical and Geoenvironmental Engineering、《岩土力学》《岩石力学与工程学报》《工程地质学报》等。huangming05@fzu.edu.cn   
作者简介:  李爽,福州大学土木工程学院2020级博士研究生,在黄明教授的指导下进行研究。主要研究领域为微生物岩土工程技术,方向为生物酶矿化胶结回填材料传热机制与服役性能。
引用本文:    
李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
LI Shuang, HUANG Ming, CUI Mingjuan, HU Xinhang, XU Kai, JIANG Qiwu. Study on the Effect and the Mechanism of Nano-Fe3O4 on Microbially Induced Calcium Carbonate Precipitation. Materials Reports, 2024, 38(20): 23040018-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040018  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23040018
1 Gebru K A, Kidanemariam T G, Gebretinsae H K. Chemical Engineering Science, 2021, 238, 116610.
2 Sun X, Miao L, Wu L, et al. Cement and Concrete Composites, 2021, 118, 103950.
3 Zeng Y, Chen Z, Du Y, et al. Journal of Environmental Management, 2021, 296, 113199.
4 Wu S, Zhou Z, Zhu L, et al. Journal of Hazardous Materials, 2022, 425, 127919.
5 Li C, Tian L, Dong C H, et al. Rock and Soil Mechanics, 2022, 43(2), 307 (in Chinese).
李驰, 田蕾, 董彩环, 等. 岩土力学, 2022, 43(2), 307.
6 Huang M, Zhang J X, Jin G X, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12), 2846 (in Chinese).
黄明, 张瑾璇, 靳贵晓, 等. 岩石力学与工程学报, 2018, 37(12), 2846.
7 Zhang J X, Huang M, Liu Z J. Journal of Engineering Geology, 2023, 31(1), 113 (in Chinese).
张瑾璇, 黄明, 刘子健. 工程地质学报, 2023, 31(1), 113.
8 Naveed M, Duan J, Uddin S, et al. Ecological Engineering, 2020, 153, 105885.
9 Xu K, Huang M, Xu C, et al. Soils and Foundations, 2023, 63(1), 101249.
10 Wang D L, Tang C S, Pan X H, et al. Engineering Geology, 2023, 107090.
11 Chu J, Ivanov V, Naeimi M, et al. Acta Geotechnica, 2014, 9, 277.
12 Wang Y J, Jiang N J, Han X L, et al. Acta Geotechnica, 2022, 17(9), 4217.
13 Venuleo S, Laloui L, Terzis D, et al. Géotechnique Letters, 2016, 6(1), 39.
14 Xiao Y, Tang Y, Ma G, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(10), 04021106.
15 Meng H, Gao Y, He J, et al. Geoderma, 2021, 383, 114723.
16 Huang M, Xu K, Xu C, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12), 04021157.
17 Xu K, Huang M, Zhen J, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(4), 1011.
18 Miao L, Wu L, Sun X, et al. Land Degradation & Development, 2020, 31(11), 1317.
19 Cui H, Xiao Y, Sun Z C, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(3), 474 (in Chinese).
崔昊, 肖杨, 孙增春, 等. 岩土工程学报, 2022, 44(3), 474.
20 Jiang Q W, Huang M, Xu K, et al. Journal of Engineering Geology, DOI:10.13544/j.cnki.jeg.2022-0184(in Chinese).
姜启武, 黄明, 许凯, 等. 工程地质学报, DOI:10.13544/j.cnki.jeg.2022-0184.
21 Huang M, Zhang J X, Liu Z J, et al. Geological Journal of China Universities. 2021, 27(6), 716 (in Chinese).
黄明, 张瑾璇, 刘子健, 等. 高校地质学报, 2021, 27(6), 716.
22 Ma G, He X, Jiang X, et al. Canadian Geotechnical Journal, 2021, 58(7), 969.
23 Ma G, Xiao Y, He X, et al. Acta Geotechnica, 2022, 17(8), 3181.
24 Liu M, Cai L, Luo H. Construction and Building Materials, 2022, 314, 125661.
25 Ishizaki Y, Horiuchi S, Okuno K, et al. Bioelectrochemistry, 2001, 54(2), 101.
26 Li G D. Progress in Modern Biomedicine, 2006(1), 66 (in Chinese).
李国栋. 生物磁学, 2006(1), 66.
27 Dai Q W, Dong F Q, Wang Y. Biomagnetism, 2004(3), 21 (in Chinese).
代群威, 董发勤, 王勇. 生物磁学, 2004(3), 21.
28 Yin H C, Xue X P, Yang H, et al. Life Science Research, 2009, 13(4), 320 (in Chinese).
尹焕才, 薛小平, 杨慧, 等. 生命科学研究, 2009, 13(4), 320.
29 Li J, Yi Y L, Jiao Y, et al. Chinese Journal of Soil Science, 2007(5), 957 (in Chinese).
栗杰, 依艳丽, 焦颖, 等. 土壤通报, 2007 (5), 957.
30 Fang G D, Si Y B. Scientia Agricultura Sinica, 2011, 44(6), 1165 (in Chinese).
方国东, 司友斌. 中国农业科学, 2011, 44(6), 1165.
31 Seifan M, Ebrahiminezhad A, Ghasemi Y, et al. Applied microbiology and Biotechnology, 2018, 102, 3595.
32 Moosazadeh R, Tabandeh F, Kalantari F, et al. Geomicrobiology Journal, 2019, 36(4), 359.
33 Naskar J, Chowdhury S, Adhikary A, et al. Arabian Journal of Geos-ciences, 2021, 14(18), 1901.
34 Whiffin V S. Microbial CaCO3 precipitation for the production of biocement. Ph. D. Thesis, Murdoch University, Australia, 2004.
35 Ramachandran S K, Ramakrishnan V, Bang S S. Materials Journal, 2001, 98(1), 3.
36 Gui X, Song B, Chen M, et al. Science of the Total Environment, 2021, 771, 145414.
37 Cui M J, Zheng J J, Chu J, et al. Acta Geotechnica, 2021, 16, 1377.
38 Cui M J, Lai H J, Hoang T, et al. Acta Geotechnica, 2021, 16, 481.
39 Benini S, Rypniewski W R, Wilson K S, et al. JBIC Journal of Biological Inorganic Chemistry, 2000, 5, 110.
40 Niu Chuan. Effect of magnetic field strengthening on the characteristics of activated sludge microorganisms at low temperature. Ph. D. Thesis, Nanjing University, China, 2014(in Chinese).
牛川. 低温下磁场强化活性污泥微生物性能基础研究. 博士学位论文, 南京大学, 2014.
41 Zhou H, Tian Z F, Tang X W, et al. CIESC Journal, 2021, 72(10), 5319(in Chinese).
周惠, 田志锋, 唐小微, 等. 化工学报, 2021, 72(10), 5319.
42 Al Omari M, Rashid I, Qinna N, et al. Profiles of Drug Substances, Excipients and Related Methodology, 2016, 41, 31.
43 Wang D, Chang J. Construction and Building Materials, 2019, 224, 336.
44 De Muynck W, De Belie N, Verstraete W. Ecological Engineering, 2010, 36(2), 118.
45 Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, et al. Applied and Environmental Microbiology, 2003, 69(4), 2182.
46 Tourney J, Ngwenya B T. Chemical Geology, 2009, 262(3-4), 138.
47 Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Geochimica et Cosmochimica Acta, 2007, 71(5), 1197.
48 Ebrahiminezhad A, Varma V, Yang S, et al. Applied microbiology and Biotechnology, 2016, 100, 173.
49 Rautaray D, Ahmad A, Sastry M. Journal of the American Chemical Society, 2003, 125(48), 14656.
[1] 彭丽云, 陈星, 齐吉琳, 朱同宇. 微生物加固粉土的强度特性及加固机理研究[J]. 材料导报, 2024, 38(13): 23010024-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed