Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23040041-7    https://doi.org/10.11896/cldb.23040041
  无机非金属及其复合材料 |
温拌沥青胶结料与混合料粘结性能研究
陈学锋1, 云广琨1, 吴特伟1, 闫力辉1, 颜川奇2,*
1 中交建筑集团西南建设有限公司,成都 610081
2 西南交通大学土木工程学院,成都 610031
Investigating the Bonding Performance of Warm Mix Asphalt Binder and Mixture
CHEN Xuefeng1, YUN Guangkun1, WU Tewei1, YAN Lihui1, YAN Chuanqi2,*
1 China Communications Construction Group Southwest Construction Co., Ltd., Chengdu 610081, China
2 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 4349KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作旨在探究Sasobit改性沥青、Evotherm改性沥青、餐厨废油(Waste cooking oil,WCO)改性沥青三种温拌沥青(WMA)胶结料及其混合料的粘结性能。采用傅里叶变换红外光谱(FTIR)和场发射透射电镜(TEM)观察温拌剂的化学成分和沥青胶结料的相态结构;采用动态剪切流变仪(DSR)拉伸试验表征沥青的内聚性能;采用胶结料粘结强度(BBS)试验表征沥青-集料的粘附性能;采用浸水汉堡车辙试验(HWT)表征沥青混合料的抗变形能力和抗剥落性能,基于分离变形的HWT曲线表征抗水损伤性能;采用肯塔堡飞散试验表征沥青混合料的抗松散性能。结果表明,Sasobit会提高沥青内聚性能而不利于沥青-集料的粘附性能,Evotherm和WCO则与之相反。混合料试验中,Sasobit大幅提高沥青混合料的抗变形能力和抗剥落性能,轻微减弱抗水损伤能力,而Evotherm和WCO均产生不利影响;Sasobit大幅减弱沥青混合料的抗松散性能,Evotherm和WCO微弱提升抗松散性能。对于HWT试验,内聚性能的影响更为显著,对于飞散损失试验,粘附性能的影响更为显著。沥青混合料的粘结性能不能完全由沥青胶结料的粘结性能代表,需要综合考虑内聚性能和粘附性能的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈学锋
云广琨
吴特伟
闫力辉
颜川奇
关键词:  温拌沥青  内聚性能  粘附性能  抗水损伤  抗剥落  抗松散    
Abstract: The aim of this study is to investigate the bonding performance of three types of warm mix asphalt (WMA) binders and mixtures, including Sasobit-modified asphalt, Evotherm-modified asphalt, and waste cooking oil (WCO)-modified asphalt. Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to observe the chemical composition of the warm mix additives and the phase structure of asphalt binders. Dynamic shear rheometer (DSR) was used to characterize the cohesion properties of asphalt, binder bond strength (BBS) test was used to characterize the adhesion properties of asphalt-aggregate, and Hamburg wheel tracking (HWT) test was used to characterize the resistance to deformation and stripping of asphalt mixtures. The HWT curve based on the separation deformation was used to characterize the resistance to water damage. The Cantabro loss test was used to characterize the resistance to looseness of asphalt mixtures. The results show that Sasobit improves the cohesion properties of asphalt but has a negative impact on the adhesion between asphalt and aggregates, while Evotherm and WCO have the opposite effect. In the mixture test, Sasobit significantly improves the resistance to deformation and stripping, slightly weakens the resistance to water damage, and significantly weakens the resistance to looseness, while Evotherm and WCO both have a negative impact. For the HWT test, the influence of cohesion properties is more significant, while for the Cantabro loss test, the influence of adhesion properties is more significant. The bonding performance of asphalt mixtures cannot be fully represented by the bonding performance of asphalt binders, and the effects of cohesion properties and adhesion properties should be considered comprehensively.
Key words:  warm mix asphalt    cohesion    adhesion    water damage resistance    stripping resistance    loosening resistance
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  U414  
基金资助: 国家重点研发计划(2022YFB2602603);香江学者项目(XJ2022040);国家自然科学基金(52008353);四川省青年科技创新研究团队(2021JDTD0023;2022JDTD0015)
通讯作者:  * 颜川奇,西南交通大学副教授、硕士研究生导师。2014 年6月于东南大学取得工学学士学位,2020年6月于同济大学取得工学博士学位,期间获得公派联合培养博士研究生资格,在威斯康星大学麦迪逊分校开展学习与研究(导师Hussain Bahia)。主要从事高性能改性沥青材料表征与研发,以第一作者或通信作者身份发表SCI收录论文30余篇,授权国家专利16项。ycq@swjtu.edu.cn   
作者简介:  陈学锋,中交建筑集团西南建设有限公司党委书记、执行董事,高级工程师,2001年6月于武汉理工大学获得工学学士学位。目前主要从事交通土建领域的研究。
引用本文:    
陈学锋, 云广琨, 吴特伟, 闫力辉, 颜川奇. 温拌沥青胶结料与混合料粘结性能研究[J]. 材料导报, 2024, 38(20): 23040041-7.
CHEN Xuefeng, YUN Guangkun, WU Tewei, YAN Lihui, YAN Chuanqi. Investigating the Bonding Performance of Warm Mix Asphalt Binder and Mixture. Materials Reports, 2024, 38(20): 23040041-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040041  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23040041
1 Rubio M C, Martínez G, Baena L, et al. Journal of Cleaner Production, 2012, 24, 76.
2 Oliveira J R M, Silva H M R D, Abreu L P F, et al. Journal of Cleaner Production, 2013, 41, 15.
3 Li Q S, Zhang H L, Shi C J, et al. Journal of Cleaner Production, 2021, 326, 129405.
4 Chen Z H, Zhang H L, Duan H H, et al. Journal of Cleaner Production, 2021, 279, 123675.
5 Xu J Q, Yang E H, Luo H Y, et al. Construction and Building Materials, 2020, 238, 117746.
6 Yuan Y, Zhu X Y, Chen L. Materials & Design, 2020, 185, 108272.
7 Liu S J, Zhou S B, Peng A H. Journal of Cleaner Production, 2020, 277, 123334.
8 Li L. Journal of Municipal Technology, 2022, 40(12), 212 (in Chinese).
李磊. 市政技术, 2022, 40(12), 212.
9 Chen Q W. Journal of Municipal Technology, 2022, 40(3), 1 (in Chinese).
陈启维. 市政技术, 2022, 40(3), 1.
10 Li B, Wang Y N, Lyu Z F, et al. China Journal of Highway and Transport, 2017, 30(10), 39 (in Chinese).
李波, 王永宁, 吕镇锋, 等. 中国公路学报, 2017, 30(10), 39.
11 Zhou L, Huang W D, Lyu Q, et al. Journal of Building Materials, 2021, 24(2), 377 (in Chinese).
周璐, 黄卫东, 吕泉, 等. 建筑材料学报, 2021, 24(2), 377.
12 Guo N S, You Z P, Zhao Y H, et al. China Journal of Highway and Transport, 2014, 27(8), 17 (in Chinese).
郭乃胜, 尤占平, 赵颖华, 等. 中国公路学报, 2014, 27(8), 17.
13 Sun W, Wang H. Applied Surface Science, 2020, 510, 145435.
14 Jattak Z A, Hassan N A, Mohd Satar M K I. Case Studies in Construction Materials, 2021, 15, e636.
15 Lv Q, Lu J, Tang X, et al. Construction and Building Materials, 2022, 340, 127831.
16 Cui S, Blackman B R K, Kinloch A J, et al. International Journal of Adhesion and Adhesives, 2014, 54, 100.
17 Kabir S F, Mousavi M, Fini E H. Journal of Cleaner Production, 2020, 252, 119856.
18 Zhang H J, Li H, Abdelhady A, et al. Journal of Cleaner Production, 2020, 252, 119929.
19 Mogawer W S, Austerman A J, Bahia H U. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2209(1), 52.
20 Vassaux S, Gaudefroy V, Boulangé L, et al. Construction and Building Materials, 2017, 133, 182.
21 Nazzal M D, Abu-Qtaish L, Kaya S, et al. Journal of Materials in Civil Engineering, 2015, 27(10), 04015005.
22 Hamzah M O, Teh S Y, Golchin B, et al. Construction and Building Materials, 2017, 132, 323.
23 Syroezhko A M, Baranov M A, Ivanov S N, et al. Coke and Chemistry, 2011, 54(1), 26.
24 Luo H Y, Leng H K, Ding H B, et al. Construction and Building Materials, 2020, 231, 117118.
25 Yu H Y, Leng Z, Dong Z J, et al. Construction and Building Materials, 2018, 175, 392.
26 Li L, Xin C, Guan M Y, et al. Sustainability, 2021, 13(8), 4373.
27 Zhang H, Jia J S, Tong Y, et al. Journal of Municipal Technology, 2022, 40(1), 70 (in Chinese).
张晗, 贾劲松, 佟禹, 等. 市政技术, 2022, 40(1), 70.
28 Hou X D, Lv S T, Chen Z, et al. Measurement, 2018, 121, 304.
29 Mannan U A, Ahmad M, Tarefder R A. Construction and Building Materials, 2017, 146, 360.
30 Kanitpong K, Bahia H. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1901(1), 33.
31 Zhang Z Q, Luo Y F, Zhang K. Materials Reports, 2017, 31(3), 96 (in Chinese).
张争奇, 罗要飞, 张苛. 材料导报, 2017, 31(3), 96.
32 Yue M J, Yue J J, Wang R R, et al. Construction and Building Materials, 2021, 289, 123054.
33 Liu K F, Zhu J C, Zhang K, et al. Construction and Building Materials, 2019, 217, 301.
[1] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[2] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[3] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[4] 耿九光, 兰倩, 刘光军, 周恒玉, 刘润喜. 基于表面能理论的破碎卵石与沥青粘附性能研究[J]. 材料导报, 2020, 34(20): 20034-20039.
[5] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[6] 李波, 张智豪, 刘祥, 李晓民, 吕镇峰. 基于表面理论的温拌SBS改性沥青-集料体系的粘附性*[J]. 《材料导报》期刊社, 2017, 31(4): 115-120.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed