Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10052-10060    https://doi.org/10.11896/cldb.19050044
  无机非金属及其复合材料 |
泡沫温拌沥青胶浆的流变特性及微观机制分析
温彦凯1, 郭乃胜1, 王淋1, 顾威2, 尤占平3
1 大连海事大学交通运输工程学院,大连 116026
2 辽宁省交通高等专科学校道路桥梁工程系,沈阳 110122
3 密歇根理工大学土木与环境工程系,霍顿 499312
Analysis of Rheological Properties and Micromechanism of Foamed Warm Mix Asphalt Mastic
WEN Yankai1, GUO Naisheng1, WANG Lin1, GU Wei2, YOU Zhanping3
1 Transportation Engineering College, Dalian Maritime University, Dalian 116026, China
2 Department of Road and Bridge Engineering, Liaoning Provincial College of Communications, Shenyang 110122, China
3 Department of Civil and Environmental Engineering, Michigan Technological University, Houghton 499312, USA
下载:  全 文 ( PDF ) ( 6976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了全面探究泡沫温拌沥青(以下简称泡沫沥青)胶浆的流变特性,分别针对不同粉胶比的泡沫沥青胶浆进行温度和频率两种扫描模式下的动态剪切流变(DSR)和弯曲梁流变(BBR)试验,分析了粉胶比对泡沫沥青胶浆高、低温性能的影响,利用van Gurp Palmen(vGP)图分析了泡沫沥青胶浆时温等效原理的有效性,基于此建立了泡沫沥青胶浆在频率扫描模式下的主曲线,并运用此主曲线分析了其在较宽的温度和频域下的流变特性。此外,通过扫描电子显微镜(SEM)的微观结构识别和差示扫描量热(DSC)的热特性测试分析了泡沫沥青胶浆的微观机制。结果表明:矿粉的添加对泡沫沥青的高、低温性能均有显著影响,随着粉胶比的增大,泡沫沥青胶浆的高温性能逐渐增强,低温性能逐渐降低;泡沫沥青胶浆适用于时温等效原理,在较宽的温度域及频率域内,泡沫沥青胶浆较基质沥青胶浆具有更优的高温性能。此外,泡沫沥青胶浆与基质沥青胶浆的低温等级温度基本一致;泡沫沥青胶浆中矿粉的分散性优于基质沥青胶浆中矿粉的分散性,且泡沫沥青胶浆中含有更多的微孔洞;基质沥青较泡沫沥青具有更好的热稳定性,但在相同的粉胶比下,泡沫沥青胶浆较基质沥青胶浆具有更好的热稳定性;粉胶比不大于1.0时,泡沫沥青胶浆较基质沥青胶浆具有更高的玻璃化转变温度。综合流变特性及微观机制分析得到泡沫沥青胶浆的粉胶比不宜大于1.0。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温彦凯
郭乃胜
王淋
顾威
尤占平
关键词:  微观机制  DSC试验  泡沫温拌沥青胶浆  流变特性  主曲线  玻璃化转变温度    
Abstract: The objective of this study is to explore the rheological properties of foamed warm mix asphalt (foamed asphalt) mastic with different filler-binder ratios completely, by using the dynamic shear rheometer (DSR) with temperature and frequency sweep, and bending beam rheometer (BBR) tests, respectively. Also, the influence of filler-asphalt ratio on the high and low temperature performance of the foamed asphalt mastic was analyzed, and the effectiveness of time-temperature superposition principle was discussed for the foamed asphalt mastic by the vGP graph. The master curve of foamed asphalt mastic was established, and then the master curve was used to perform a rheological analysis in a wide temperature and frequency domain. In addition, this study investigated the micromechanism of the foamed asphalt mastic by using direct microstructure observations and thermal property testing, including scanning electron microscope (SEM) and differential scanning calorimeter (DSC). The results show that the addition of mineral filler exhibits a significant influence on the high and low temperature performance of the foamed asphalt. Then, with the increase of filler-binder ratio, the high temperature performance of the foamed asphalt mastic increases, and the low temperature performance decreases. The time-temperature superposition principle can be employed in the foamed asphalt mastic investigated. The foamed asphalt mastic shows high temperature performance better than the base asphalt mastic in a wide temperature and frequency domain. The low temperature grading temperature of the foamed asphalt mastic exhibits a favorable consistency with that of the base asphalt mastic in this study. The distribution of filler in the base asphalt mastic is inferior to that in the foamed asphalt mastic. The base asphalt mastic with larger amount of micro-hole is found compared with foamed asphalt mastic. The foamed asphalt indicates a thermal stability lower than base asphalt, however, the thermal stability of foamed asphalt mastic displays an obvious increase as compare to that of base asphalt mastic. The foamed asphalt mastic performs glass transition temperature higher than the base asphalt mastic when the filler-binder ratio is less than 1.0. The filler-binder ratio in the foamed asphalt mastic is proposed to be less than 1.0 through the rheological properties and micromechanism investigation.
Key words:  micromechanism    DSC test    foamed warm mix asphalt mastic    rheological property    master curve    glass transition temperature
                    发布日期:  2020-04-26
ZTFLH:  U414  
  TP399  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项基金(3132017029)
通讯作者:  郭乃胜,2007年毕业于大连海事大学,获得工学博士学位。2009—2012年在哈尔滨工业大学进行博士后研究工作。2013—2014年在美国密歇根理工大学作访问学者。现任大连海事大学交通运输工程学院教授。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文60余篇,其中SCI、EI检索30余篇。naishengguo@126.com   
作者简介:  温彦凯,2017年毕业于辽宁工程技术大学,获得工学硕士学位。现为大连海事大学博士研究生,指导教师为郭乃胜教授。主要研究方向为沥青及沥青混合料。
引用本文:    
温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
WEN Yankai, GUO Naisheng, WANG Lin, GU Wei, YOU Zhanping. Analysis of Rheological Properties and Micromechanism of Foamed Warm Mix Asphalt Mastic. Materials Reports, 2020, 34(10): 10052-10060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050044  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10052
1 Hasan M R M, You Z, Yang X. Construction and Building Materials, 2017, 152,115.
2 Hailesilassie B W, Hugener M, Partl M N. Construction and Building Materials, 2015, 85,65.
3 Ozturk H I, Kutay M E. Journal of Materials in Civil Engineering, 2014, 26(8),04014042-1.
4 Xu Jinzhi, Hao Peiwen. Journal of Building Materials, 2011, 14(6) 776(in Chinese).
徐金枝, 郝培文.建筑材料学报, 2011, 14(6),776.
5 Arega Z A, Bhasin A, Li W, et al. Journal of Materials in Civil Engineering, 2014, 26(10),04014078-1.
6 Abreu L P F, Oliveira J R M, Silva H M R D, et al. Construction and Building Materials, 2017, 142,342.
7 Shu X, Huang B, Shrum E D, et al. Construction and Building Mate-rials, 2012, 35,125.
8 Ali A, Abbas A, Nazzal M, et al. Construction and Building Materials, 2013, 48, 1058.
9 Xiao F, Punith B J. Journal of Materials in Civil Engineering, 2013, 25(9), 1344.
10 Liu S, Yu X, Dong F. Construction and Building Materials, 2017, 131, 138.
11 Chen Long, He Zhaoyi, Chen Hongbin. Journal of Highway and Transportation Research and Development, 2016, 33(2), 1(in Chinese).
陈龙, 何兆益, 陈宏斌.公路交通科技, 2016, 33(2), 1.
12 Li Z, Hao P, Liu H, et al. Construction and Building Materials, 2016, 127, 410.
13 Xu Jinzhi, Hao Peiwen, Wang Hong, et al. Acta Materiae Compositae Sinica, 2017, 34(4), 687(in Chinese).
徐金枝, 郝培文, 王宏, 等.复合材料学报, 2017, 34(4), 687.
14 Martinez A G, Giustozzi F, Crispino M, et al. Construction and Building Materials, 2014, 72, 423.
15 Yu X, Wang Y, Luo Y. Construction and Building Materials, 2013, 48, 203.
16 Yu X, Liu S, Dong F. Construction and Building Materials, 2016, 122, 354.
17 Yu X, Leng Z, Wang Y, et al. Construction and Building Materials, 2014, 67, 279.
18 Yu X, Dong F, Ding G, et al. Construction and Building Materials, 2016, 114, 215.
19 Wang Hong, Liu Feng. Journal of Highway and Transportation Research and Development, 2016, 33(2), 19(in Chinese).
王宏, 刘峰.公路交通科技, 2016, 33(2), 19.
20 You L, You Z, Dai Q, et al. Construction and Building Materials, 2018, 184, 391.
21 Quan Yaping. Study on rheological performance of coupling SBS for modified asphalt. Master's Thesis, Chang'an University, China, 2014(in Chinese).
权亚萍. 基于偶联法聚合线型SBS的改性沥青流变特性研究. 硕士学位论文,长安大学, 2014.
[1] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[2] 郭萍, 赵永庆, 洪权, 毛小南, 侯红苗, 潘浩. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20): 3448-3451.
[3] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[4] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed