Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6088-6094    https://doi.org/10.11896/cldb.18060024
  无机非金属及其复合材料 |
超声波对全尾砂砂浆流变特性的影响
诸利一1, 吕文生1, 杨鹏2, 王志凯3, 王志军2
1 北京科技大学土木与资源工程学院,北京 100083;
2 北京联合大学北京市信息服务工程重点实验室,北京 100101;
3 中国恩菲工程技术有限公司,北京 100038
Effect of Ultrasonic on Rheological Properties of Unclassified Tailings Slurry
ZHU Liyi1, LYU Wensheng1, YANG Peng2, WANG Zhikai3, WANG Zhijun2
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China;
3 China Enfi Engineering Corporation, Beijing 100038, China
下载:  全 文 ( PDF ) ( 7188KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善充填砂仓中砂浆的流变特性,创新性地将超声场引入,利用声场辐射方式传播的特性,将超声场非接触性地作用于全尾砂砂浆介质中,研究充填砂仓中全尾砂砂浆在超声场作用下的流变特性。采用BrookfieldR/S-SST软固体流变测试仪,测得不同浓度全尾砂砂浆的流变参数,并结合超声波作用机理分析其作用效果和影响原因。试验结果表明:分别对70%、72%、74%、76%和78%五种浓度全尾砂砂浆施加20kHz和40kHz两种频率下36W、62W、85W、100W的超声,黏度降幅可达6.421%~23.504%,屈服应力降幅达7.773%~33.125%。塑性黏度与功率存在显著的线性关系,屈服应力与功率存在明显的线性、二次、Boltzmann、Logistic分布关系。在其他试验条件相同的情况下,总体上40kHz比20kHz的超声作用效果相对明显,高功率优于低功率;超声波不仅能使砂浆颗粒产生机械振动,而且能产生明显的空化效应和热效应,在降低全尾砂砂浆的塑性黏度和屈服应力、改善砂仓中尾砂浆流动性和砂仓放砂等方面具有显著的优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
诸利一
吕文生
杨鹏
王志凯
王志军
关键词:  超声波  充填砂仓  全尾砂砂浆  流变特性    
Abstract: In order to improve the rheological properties of slurry in backfilling silo, sound field was innovatively introduced. Based on the transmission characteristics of ultrasonic sound field, the non-contact sound field was applied to the unclassified tailings slurry medium, and the effects of ultrasonic on rheological properties of the unclassified tailings slurry in backfilling silo were studied. The rheological parameters of unclassified tai-lings slurry with different concentrations were tested using the Brookfield soft-solid rheological rheometer (R/S-SST) and combined with the ultrasonic mechanism to analyze the effects and reasons. The results show that the ultrasonic waves of 36 W, 62 W, 85 W and 100 W at 20 kHz and 40 kHz frequency were applied to the five kinds of unclassified tailings slurry with the concentrations of 70%, 72%, 74%, 76% and 78% respectively, and the plastic viscosity can be reduced from 6.421% to 23.504%, and the yield stress can be reduced from 7.773% to 33.125%. There is a significant linear relationship between plastic viscosity and power, and there are obvious linear, quadratic, Boltzmann and Logistic distributions between yield stress and power. Simultaneously, 40 kHz ultrasonic effects are better than 20 kHz and high power ultrasound is superior to low power, other things being equal in test. Ultrasound can make the tailings slurry particles produce mechanical vibration, and produce significant cavitation and thermal effects. The ultrasound is capable of reducing the plastic viscosity and yield stress, and improving the fluidity of the tailings slurry and discharged sand in the sand silo.
Key words:  ultrasound wave    backfilling silo    unclassified tailings slurry    rheology properties
                    发布日期:  2020-03-12
ZTFLH:  TD853  
  TU521.1  
基金资助: 国家自然科学基金(51641401)
作者简介:  诸利一,2019年1月毕业于北京科技大学,获工学硕士学位,目前攻读北京科技大学采矿工程博士学位,在杨鹏教授和吕文生副教授指导下进行研究。目前主要研究领域为声波/超声波作用下的充填尾砂浆浓密与流变工艺;吕文生,北京科技大学副教授,博士,采矿工程系副主任。1990年本科毕业于北京科技大学采矿工程专业,1993年研究生毕业于北京科技大学采矿工程系留校至今。其中2015—2016年到澳大利阿德莱德大学进行访问与合作研究。在国内外期刊上发表学术论文50多篇,授权国家发明专利3项,出版专著2部。负责完成科研项目30多项。包括主持和参与多个国家自然科学基金项目和国家“十三五”重点研发项目。获省部级科技进步一等奖两项,二等奖五项。荣获北京科技大学德育先进工作者和土木与资源工程学院先进个人称号。主要从事矿山充填与工艺等方面的教学与研究。
引用本文:    
诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
ZHU Liyi, LYU Wensheng, YANG Peng, WANG Zhikai, WANG Zhijun. Effect of Ultrasonic on Rheological Properties of Unclassified Tailings Slurry. Materials Reports, 2020, 34(6): 6088-6094.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060024  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6088
1 Zhang X X. Study on rheological properties and multivariate effects of high concentration filling slurry in mud waste and tailings. Ph.D. Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
张修香. 矿山废石-尾砂高浓度充填料浆的流变特性及多因素影响规律研究. 博士学位论文, 昆明理工大学, 2016.
2 Mavrov V, Erwe T, Blöcher C, et al.Desalination,2002,157 (1-3),97.
3 Claverla I, Javierre C, Ponz L. Journal of Materials Processing Technology,2005,162-163,447.
4 Liu L. Research on proportion optimization and flow characteristic of backfill paste in mine sites. Ph.D. Thesis, Central South University, China, 2013 (in Chinese).
刘浪. 矿山充填膏体配比优化与流动特性研究. 博士学位论文, 中南大学, 2013.
5 Zhen S P, Niu K M, Tian B,et al. Journal of Building Materials, 2017,20 (6),962. (in Chinese).
郑少鹏, 牛开民, 田波, 等. 建筑材料学报. 2017, 20 (6), 962.
6 Fourie A B. Paste and thickened tailings: a guide, The University of Western Australia Press, 2006.
7 Lima P, Toledo Filho R D, Gomes O. Key Engineering Materials,2014,600,297.
8 Han D, Ferron R D. Construction and Building Materials,2015,93,278.
9 Zhai Y G, Wu A X, Wang H J, et al.Metal Mine,2010 (12),30 (in Chinese).
翟永刚, 吴爱祥, 王洪江, 等. 金属矿山, 2010 (12), 30.
10 Wu F Z, Guo D P, Wang J L, et al. Concrete, 2013, 280 (2),110 (in Chinese).
吴方政, 郭大鹏, 王稷良, 等. 混凝土, 2013, 280 (2), 110.
11 He Z X. Quarterly of CIMR, 1990 (1),48 (in Chinese).
何哲祥.长沙矿山研究院季刊, 1990 (1), 48.
12 Ding H. Computational ultrasonics-analysis and application of ultrasonic field, Science Press, China, 2010 (in Chinese).
丁辉. 计算超声学:声场分析及应用, 科学出版社, 2010.
13 Wang R, Liu J Z, Hu Y X, et al. Fuel Processing Technology,2014,125 (9),94.
14 Guo Z B, Feng R, Zheng Y F, et al.Ultrasonics Sonochemistry, 2007,14 (5),583.
15 Wang Z K, Yang P, LV W S, et al. Chinese Journal of Engineering,2017,39 (9),1313 (in Chinese).
王志凯, 杨鹏, 吕文生, 等. 工程科学学报, 2017, 39 (9), 1313.
16 Sun K K, Zhou X M, Gong C C, et al.Construction and Building Mate-rials,2016,115,125.
17 Qian L M, Luo J B, Wen S Z, et al. Acta Physica Sinica, 2000, 49 (11),2240 (in Chinese).
钱林茂, 雒建斌, 温诗铸, 等. 物理学报, 2000, 49 (11), 2240.
18 Wang F. Laboratory investigation of ultrasonic reducing the viscosity of crude oil. Master's Thesis, China University of Petroleum (East China), China, 2010 (in Chinese).
王方. 超声波降低原油粘度的室内实验研究. 硕士学位论文, 中国石油大学, 2010.
[1] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[4] 桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
[5] 祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed