Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3199-3207    https://doi.org/10.11896/j.issn.1005-023X.2018.18.018
  金属与金属基复合材料 |
T2铜箔热辅助超声波增材制造工艺
桑健1, 王波1,2,3, 朱训明2, 张洪涛1,3, 王云峰2, 金伟1,2, 高丙路1,2,3, 常青1, 何鹏1
1 哈尔滨工业大学(威海)材料科学与工程学院,威海 264209;
2 威海万丰镁业科技发展有限公司,威海 264209;
3 山东船舶技术研究院,威海 264209
Process of Heat-assisted Ultrasonic Additive Manufacturing of T2 Cu Foil
SANG Jian1, WANG Bo1,2,3, ZHU Xunming2, ZHANG Hongtao1,3, WANG Yunfeng2, JIN Wei1,2, GAO Binglu1,2,3, CHANG Qing1, HE Peng1
1 College of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209;
2 Weihai Wanfeng Magnesium S &T Development Co., Ltd., Weihai 264209;
3 Shandong Institute of Shipbuilding Technology, Weihai 264209
下载:  全 文 ( PDF ) ( 9672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用5 kW大功率超声波发生器配合双换能器推挽式滚焊压头进行T2铜箔的超声波增材制造,同时通过辅助加热装置提供外加热场优化焊接过程的热量分布,研究了不同加热温度和不同焊接压强下界面温度对超声波叠焊样品的显微组织、力学性能、断口形貌的影响。结果表明:超声波叠焊样品的固相结合强度在加热温度为100 ℃时最佳,为24.420 N/mm,并随界面最高温度升高先增大后减小。焊接过程中界面金属发生了高频率的塑性变形,发生动态再结晶现象;连接界面处呈漩涡咬合状。剥离界面形貌分析表明良好结合区域的断裂形式均为准解理断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桑健
王波
朱训明
张洪涛
王云峰
金伟
高丙路
常青
何鹏
关键词:  T2铜箔  超声波增材制造  热辅助  固相连接    
Abstract: The ultrasonic generator of 5 kW high power with double transducer push-pull roll welding head was used to make the ultrasonic incremental manufacturing of T2 Cu foil, and the external thermal field was provided by auxiliary heating device to make the heat distribution optimized in welding process. The influence of interface temperature on microstructure, mechanical pro-perties and fracture morphology of ultrasonic welding samples under different heating temperature and different welding pressure was investigated. The result implied that the solid phase bonding strength of the ultrasonic lap welding sample was best when the heating temperature was 100 ℃, which was 24.420 N/mm, and it increased first and then decreased with the increase of the interfacial temperature. At the same time, the plastic deformation in high frequency and dynamic recrystallization happened in the metal of ultraso-nic welding combined interface, and it appeared whirlpool and occlusion in the interface. The analysis of the peel interface morphology discovered that all the fracture mode of good bonding region are quasi-cleavage fracture.
Key words:  T2 Cu foil    ultrasonic additive manufacturing    auxiliary heating    consolidation
                    发布日期:  2018-10-18
ZTFLH:  TG456  
基金资助: 山东省重点研发计划(2017GGX30132);哈尔滨工业大学科研创新基金(HIT.NSRIF.201707);泰山学者青年专家支持计划(tsqn20161062)
通讯作者:  张洪涛:1980年生,博士,副教授,主要研究方向为异种材料熔-钎焊及特种焊接 E-mail:zhanght@hitwh.edu.cn   
作者简介:  桑健:男,1992年生,硕士研究生,主要研究方向为超声波焊接及增材制造技术 E-mail:sangjian1992@163.com
引用本文:    
桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
SANG Jian, WANG Bo, ZHU Xunming, ZHANG Hongtao, WANG Yunfeng, JIN Wei, GAO Binglu, CHANG Qing, HE Peng. Process of Heat-assisted Ultrasonic Additive Manufacturing of T2 Cu Foil. Materials Reports, 2018, 32(18): 3199-3207.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.018  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3199
1 Guan Q. Welding/joining and additive manufacturing (3D printing)[J].Welding & Joining,2014(5):1(in Chinese).
关桥.焊接/连接与增材制造(3D打印)[J].焊接,2014(5):1.
2 Pan L W, Dong H G. New progress in research of welding additive manufacturing[J].Welding & Joining,2016(4):27(in Chinese).
潘龙威,董红刚.焊接增材制造研究新进展[J].焊接,2016(4):27.
3 Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique[J].Journal of Nanjing University of Aeronautics & Astronautics,2014,46(5):675(in Chinese).
赵剑锋,马智勇,谢德巧,等.金属增材制造技术[J].南京航空航天大学学报,2014,46(5):675.
4 Zeng X Q, Zhu X R. Research and application present condition on the materials of selective laser sintering[J].Mechanical Research and Application,2005,11(6):19(in Chinese).
曾锡琴,朱小蓉.激光选区烧结成型材料的研究和应用现状[J].机械研究与应用,2005,11(6):19.
5 Balasundaram R, Patel V K, Bhole S D, et al. Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints[J].Materials Science & Engineering A,2014,607:277.
6 Bakavos D, Prangnell P B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet[J].Materials Science & Engineering A,2010,527(23):6320.
7 Patel V K, Bhole S D, Chen D L. Microstructure and mechanical properties of dissimilar welded Mg-Al joints by ultrasonic spot wel-ding technique[J].Science & Technology of Welding & Joining,2012,17(3):202.
8 Obielodan J, Stucker B. A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing[J].International Journal of Advanced Manufacturing Technology,2014,70(1-4):277.
9 Sojiphan K, Babu S S, Benatar A, et al. Effects of ultrasonic power on the hardness of aluminum 3003-H18 alloy[J].Welding Journal,2016,95(6):185.
10 Zhu Z Q, Wu Z H, Fan J H. Research situation and prospects of ultrasonic metal welding[J].Welding Technology,2010,39(12):1(in Chinese).
朱政强,吴宗辉,范静辉.超声波金属焊接的研究现状与展望[J].焊接技术,2010,39(12):1.
11 Kong C Y, Soar R C, Dickens P M. Optimum process parameters for ultrasonic consolidation of 3003 aluminium[J].Journal of Mate-rials Processing Technology,2004,146(2):181.
12 White D. Methods of improving uniformity in additive manufacturing processes: US,7309400 [P].2007-12-18.
13 Wolcott P J. Ultrasonic additive manufacturing: Weld optimization for aluminum 6061, development of scarf joints for aluminum sheet metal, and joining of high strength metals [D].US: The Ohio State University,2015.
14 Yang S W, Wu Z Q, Chen P, et al. Experimental research on ultrasonic welding of copper sheet to copper tube for collecting solar energy[J].Welding & Joining,2005(9):32(in Chinese).
杨圣文,吴泽群,陈平,等.铜片-铜管太阳能集热板超声波焊接实验研究[J].焊接,2005(9):32.
15 Gunduz I E, Ando T, Shattuck E, et al. Enhanced diffusion and phase transformations during ultrasonic welding of zinc and aluminum[J].Scripta Materialia,2005,52(9):939.
16 Matsuoka S I, Imai H. Direct welding of different metals used ultrasonic vibration[J].Journal of Materials Processing Technology,2009,209(2):954.
17 Itoh H. Ultrasonic welding of heat-treatable aluminium alloy A6061 sheet[J].Welding International,2009,23(9):633.
[1] 申琦,余森,牛金龙,汶斌斌,刘少辉,于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[2] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[3] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[4] 彭进, 王星星, 杨嘉佳, 李勇, 王孝虎. 单束与双束串行激光填丝焊特性对比[J]. 材料导报, 2018, 32(16): 2822-2827.
[5] 杨 丹,宁玉恒,赵宇光,朱国斌,徐晓峰. 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 133-140.
[6] 江畅, 黄春平, 夏春, 柯黎明. Ti40阻燃钛合金电子束焊接头组织与力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 117-120.
[7] 王凯博, 吕耀辉, 刘玉欣, 孙哲, 徐滨士. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 100-104.
[8] 杨智华, 杨尚磊, 姜亦帅, 王妍. 7075高强铝合金激光填丝焊接组织与力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 60-63.
[9] 席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
[10] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[13] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[14] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed