Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 72-76    https://doi.org/10.11896/j.issn.1005-023X.2017.09.009
  专题栏目:二维材料 |
超声波辅助二元溶剂剥离制备石墨烯*
祁帅, 黄国强
天津大学化工学院,天津 300072
Preparation of Graphene by Ultrasonic-assisted Exfoliation of Graphite in Binary Solvents
QI Shuai, HUANG Guoqiang
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 1825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探索了N,N-二甲基甲酰胺和正丁醇、N,N-二甲基甲酰胺和乙醇两种二元体系剥离制备石墨烯的效果,得到了最佳剥离配比,提高了石墨烯分散液的浓度以及稳定性,并引入氢键的相关知识解释了该现象,指出了Hansen溶解度理论并不适合本研究所选的二元体系。通过原子力显微镜、 透射电子显微镜、 拉曼光谱等对样品的形貌和结构进行了表征,并通过石墨烯分散液的吸光度回归得到了其吸光度系数。经6 000 r/min高速离心分离后,所得石墨烯分散液大部分为单层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁帅
黄国强
关键词:  石墨烯  超声波  二元溶剂  剥离    
Abstract: This paper reports two binary-solvent systems, i.e. dimethylformamide/n-butylalcohol system and dimethylformamide/ethanol system that facilitate higher concentration and improved stability of graphene dispersion. Hydrogen bond was introduced to explain the exfoliation mechanism and stabilizing mechanism. At the same time, it was found that Hansen solubility theory was not suitable for the chosen binary solvent systems. Furthermore, the topography and nanostructure of graphene were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The absorbance coefficient of graphene dispersion was obtained by UV-Vis spectra. Finally, a graphene dispersion that predominantly containing single-layer graphene was obtained after 6 000 r/min centrifugation.
Key words:  graphene    ultrasonic    binary solvents    exfoliation
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TQ127.1  
基金资助: *国家自然科学基金(21676197)
通讯作者:  黄国强:男,1973年生,博士,副教授,主要从事多晶硅精馏领域的研究、开发与工程设计以及石墨烯制备工艺研究 E-mail: hgq@tju.edu.cn   
作者简介:  祁帅:男,1991年生,硕士研究生,主要从事剥离制备石墨烯工艺的研究 E-mail: qishuai@tju.edu.cn
引用本文:    
祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
QI Shuai, HUANG Guoqiang. Preparation of Graphene by Ultrasonic-assisted Exfoliation of Graphite in Binary Solvents. Materials Reports, 2017, 31(9): 72-76.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.009  或          http://www.mater-rep.com/CN/Y2017/V31/I9/72
[1] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
[2] He Dafang, Wu Jian, Liu Zhanjian, et al.Recent advances in preparation of graphene for applications[J]. J Chem Ind Eng(China), 2015, 66(8):2888 (in Chinese).何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报,2015,66(8):2888.
[3] Bolotin K I, Sikes K J, et al.Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9-10):351.
[4] Balandin A A, Ghosh S, Bao W, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
[5] Lee C, Wei X, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
[6] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523.
[7] Stoller M D, Park S, Zhu Y, et al.Graphene-based ultracapacitors[J]. Nano Lett,2008,8(10):3498.
[8] Eda G, Chhowalla M.Graphene-based composite thin films for electronics[J]. Nano Letters,2009,9(2):814.
[9] Hernandez Y,et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nat Nanotech-nol,2008,3(9):563.
[10] Matsumoto M, et al.Ultrahigh-throughput exfo-liation of graphite into pristine ‘single-layer' graphene using microwaves and molecularly engineered ionic liquids[J]. Nat Chem,2015,7(9):730.
[11] Raccichini R, Balducci A, et al. Method of producing graphene by exfoliation of graphite: WO, 2015/131933[P]. 2015-09-11.
[12] Niazi M B K. Effect of concentration of surfactant on the exfoliation of graphite to graphene in aqueous media[J]. Nanomater Nanotechnol,2016,6(14):1.
[13] Cui J, Song Z, Xin L, et al.Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer[J]. Carbon,2016,99:249.
[14] Chia J S Y, Tan M T T, et al. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J]. Chem Eng J,2014,249:270.
[15] Chen J, et al.A binary solvent system for improved liquid phase exfoliation of pristine graphene materials[J]. Carbon,2015,94:405.
[16] Posudievsky O Y, Khazieieva O A, et al.High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite[J]. J Nanoparticle Res,2013,15(11):1.
[17] Hernandez Y, Lotya M, Rickard D, et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir ACS J Surf Colloids, 2010, 26(5):3208.
[18] Zhou K G, Mao N N, Wang H X, et al.A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angew Chem,2011,50(46):10839.
[19] Hansen C M.Hansen solubility parameters: A user's handbook [M]. Boca Raton: CRC Press, 2007:323.
[20] 王庆文, 杨玉桓, 高鸿宾. 有机化学中的氢键问题 [M]. 天津:天津大学出版社, 1993:75.
[21] Ferrari A C.Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun,2007,143(1-2):47.
[22] Ferrari A C, Meyer J C, Scardaci V, et al.Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett,2006,97(18):13831.
[23] Stengl V, Henych J, Ecorchard P, et al.A green method of graphene preparation in an alkaline environment[J]. Ultrasonics Sonochem,2014,24:65.
[1] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[2] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[5] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[6] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[7] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[8] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[9] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[10] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[11] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[12] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[13] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[14] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[15] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed