Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6001-6005    https://doi.org/10.11896/cldb.19030168
  无机非金属及其复合材料 |
化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究
王延伟1,2, 卢维尔1,3,4, 闫美菊1,2, 夏洋1,3,4,5
1 中国科学院微电子研究所仪器设备研发中心,北京 100029;
2 北京交通大学理学院,北京 100044;
3 北京市微电子制备仪器设备工程技术研究中心,北京 100029;
4 集成电路测试技术北京市重点实验室,北京 100029;
5 中国科学院大学,北京 101407
Preparation Process of the Single Crystal Graphene with Different Sizes by Chemical Vapor Deposition
WANG Yanwei1,2, LU Wei'er1,3,4, YAN Meiju1,2, XIA Yang1,3,4,5
1 Microelectronic Instrument and Equipment Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 School of Science, Beijing Jiaotong University, Beijing 100044, China;
3 Beijing Research Center of Engineering and Technology of Instrument and Equipment for Microelectronics Fabrication, Beijing 100029, China;
4 Beijing Key Laboratory of IC Test Technology, Beijing 100029, China;
5 University of Chinese Academy of Sciences, Beijing 101407, China
下载:  全 文 ( PDF ) ( 6394KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验以多晶铜为基底,研究了利用化学气相沉积(CVD)技术制备不同尺寸的单晶石墨烯的工艺。对比了铜基底预处理方法、气体流量、压强和生长时间对单晶石墨烯尺寸及表面形貌的影响,结果表明,Ar和O2预处理可以降低石墨烯的成核密度,适当的CH4浓度便于单晶石墨烯的生长,压强的大小影响单晶的形貌,生长时间决定了单晶的尺寸。通过对预处理气体及流量、生长压强和时间等参数的调节,获得了0.01~6mm单晶石墨烯的可靠制备工艺。在常压101.325kPa、铜基底经Ar和O2预处理、生长温度1068℃、600sccmH2和25sccmCH4的气体条件下,制备出6mm的单晶石墨烯。此外,本实验还对石墨烯制备过程中杂质颗粒的形成机理进行了研究,发现引入的杂质颗粒可能是基底Cu氧化后的结晶颗粒以及石英管在高温条件下硅的脱落。本研究所得不同尺寸单晶石墨烯的可靠制备方法为新型电子器件的发展提供了有力的支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王延伟
卢维尔
闫美菊
夏洋
关键词:  化学气相沉积  单晶石墨烯  大尺寸    
Abstract: Preparation and properties of the single crystal graphene with different sizes on the copper substrates have been investigated. The effects of copper substrate pretreatment method, gas flow rate, pressure and growth time on the size and surface morphology of single crystal graphene were compared. Ar and O2 pretreatment can reduce graphene nucleation density, and appropriate CH4 concentration facilitates the growth of single crystal graphene. The chamber vacuum could modulate the morphology of single crystal graphene and the growth time decides the graphene sizes. By adjusting the parameters of pretreatment gas and flow rate, growth pressure and time, a reliable preparation process of single crystal graphene with the sizes between 0.01—6 mm has been obtained. The single crystal graphene with the size of 6 mm was prepared under the conditions of 101.325 kPa, Ar and O2 pretreatment, 1 068 ℃, 600 sccm H2 and 25 sccm CH4. In addition, the formation mechanism of impurity particles during the graphene preparation process has also been studied. It might be due to that the oxidation of the copper substrate and the Si atoms fell off from the quartz tube during the high temperature. The reliable preparation of single-crystal graphene of different size could open up broad prospect for the application of new graphene electronic devices.
Key words:  chemical vapor deposition    single crystal graphene    big sizes
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  O474.1  
基金资助: 国家自然科学基金青年科学基金(61604175);国家自然科学基金(61427901)
作者简介:  王延伟,2017年9月起就读于北京交通大学的硕士研究生。于2018年3月至2019年3月在中国科学院微电子研究所联合培养学习,主要从事二维材料和光学元件领域的研究;卢维尔,中国科学院微电子研究所,副研究员。2012年7月毕业于中国科学院理化技术研究所,材料学博士专业。同年加入中国科学院微电子研究所微电子设备实验室工作至今,主要从事薄膜沉积创新原理设备与工艺的研发,重点研究微纳薄膜、二维材料及器件的制备、表征以及应用。在国内外重要期刊发表文章20多篇,申报发明专利20余项。
引用本文:    
王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
WANG Yanwei, LU Wei'er, YAN Meiju, XIA Yang. Preparation Process of the Single Crystal Graphene with Different Sizes by Chemical Vapor Deposition. Materials Reports, 2020, 34(6): 6001-6005.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030168  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6001
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306 (5696), 666.
2 Zhang Y, Tan Y W, Stormer H L, et al. Nature, 2005, 438 (7065), 201.
3 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8 (3), 902.
4 He D, Shen L, Zhang X, et al. AICHE Journal, 2014, 60 (8), 2757.
5 Wang Q S, Xiao X D, Yang Y Q, et al. Material Sciences, 2018, 8 (3), 202.
6 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010,5,574.
7 Zou Z Y, Dai B Y, Liu Z F. Science China: Chemistry, 2013, 43 (1), 1 (in Chinese).
邹志宇, 戴博雅, 刘忠范. 中国科学: 化学, 2013, 43 (1), 1.
8 Chen X D, Chen Z L, Sun J Y, et al. Acta Physico-Chimica Sinica, 2016, 32 (1), 14 (in Chinese).
陈旭东, 陈召龙, 孙靖宇,等. 物理化学学报, 2016, 32 (1),14.
9 Chuhei O, Ayato N. Journal of Physics:Condensed Matter, 1997, 9, 1.
10 Li X, Cai W, An J, et al. Science, 2009, 324, 1312.
11 Tsen A W, Brown L, Havener R W, et al. Accounts of Chemical Research, 2012, 46 (10), 2286.
12 Cumming A W, Duong D L, Nguyen V L, et al. Advanced Materials, 2014, 26, 5079.
13 Zhou H, Yu W J, Liu L, et al. Nature Communications, 2013, 3096 (4), 2096.
14 Hao Y, Bharathi M S, Wang L, et al. Science, 2013, 342 (6159), 720.
15 Gan L, Luo Z. ASC Nano, 2013, 7 (10), 9480.
16 Wu T, Zhang X, Yuan Q, et al. Nature Materials, 2015, 15 (1), 43.
17 Shuting Zheng, Mengqi Zeng, Hui Cao, et al. Science China Materials, 2019, 62 (8),1087.
18 Zheng Y, Jian L, Zhiwei P, et al. ACS Nano, 2012, 6, 9110.
19 Philopp B W, Barry B, Andrew J P, et al. Chemistry of Materials, 2016, 28, 8905.
20 Xu X Z, Zhang Z H, Qiu L, et al. Nature Nanotechnology, 2016, 11, 930.
21 Wang Z G, Chen Y F, Li P J,et al. Vacuum, 2012, 86, 895.
22 Shi X D, Wang W, Yin Q. Materials Reports A: Review Papers, 2017, 31 (3), 22 (in Chinese).
石晓东, 王伟, 尹强. 材料导报:综述篇, 2017, 31 (3), 22.
23 Wang J, Chen L, Wu N, et al. Carbon, 2016, 96,799.
24 Ferrari A C. Solid State Communications, 2007,143 (1), 47.
25 Jaeho K, Hajime S, Hiromoto I. Nano Letters, 2019, 19, 739.
[1] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[2] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[3] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[4] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[5] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[6] 张自元, 门传玲, 曹军, 李振鹏, 赵明杰. 借助聚合物实现石墨烯转移的技术进展*[J]. 《材料导报》期刊社, 2017, 31(3): 130-135.
[7] 石晓东, 王伟, 尹强, 李春静. 化学气相沉积制备大面积高质量石墨烯的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 136-142.
[8] 赵晨,贾伟,樊腾,仝广运,李天保,翟光美,马淑芳,许并社,. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报编辑部, 2017, 31(22): 21-25.
[9] 龙晓阳, 俄松峰, 李朝威, 李涛涛, 吴隽, 姚亚刚. 化学气相沉积法制备氮化硼纳米管的研究进展:反应装置、气源材料、催化剂*[J]. 《材料导报》期刊社, 2017, 31(19): 19-27.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed