Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3708-3711    https://doi.org/10.11896/cldb.18110101
  无机非金属及其复合材料 |
热力学计算指导下改进CVD法制备大面积薄层MoS2
龚跃球,石晓宇,李京兵,谢淑红
湘潭大学材料科学与工程学院,湘潭 411105
Preparing Large Area MoS2 Thin Layers by Improved Chemical Vapor Deposition Under Instruction of Thermodynamic Calculations
GONG Yueqiu, SHI Xiaoyu, LI Jingbing, XIE Shuhong
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105
下载:  全 文 ( PDF ) ( 2407KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了探索改进化学气相沉积法(CVD)制备薄层MoS2的最佳制备温度,计算了不同温度下该反应体系吉布斯自由能的变化。在热力学计算的指导下,采用多温区管式炉制备MoS2纳米片,对反应温度和沉积温度进行了精准的掌控,并研究了几个重要参考温度对MoS2的影响。结果表明,改进型CVD法制备的薄层MoS2纳米片结晶质量高、厚度均匀;温度对MoS2的形貌、尺寸和结晶质量的影响显著,MoS2的尺寸随温度的升高而增大,当温度达到850 ℃时,MoS2纳米片转化为多边形;同时,确定了制备MoS2的最佳温度为800 ℃。拉曼光谱、荧光光谱、扫描电镜和原子力显微镜测试结果均表明,在800 ℃下,可以制备出结晶质量高、厚度均匀、尺寸高达几百微米的大面积薄层MoS2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚跃球
石晓宇
李京兵
谢淑红
关键词:  热力学计算  改进的化学气相沉积  二硫化钼  拉曼光谱  荧光光谱  大面积薄层    
Abstract: For the sake of determining the optimal temperature for preparing MoS2thin layers by improved chemical vapor deposition (CVD), we calculated and analyzed the Gibbs free energy of the reaction system at various temperatures. Under the instruction of thermodynamic calculations, we prepared the MoS2 nanosheets in a multi-temperature zone tube furnace, with the precise control of reaction temperature and deposition temperature, and explored the impact of several important reference temperatures on the growth of MoS2. It could be found from the results that the MoS2 thin layers prepared by improved CVD were endowed with high quality and uniform thickness, and temperature exerted phenomenal impact on the morphology, size and crystalline quality of these MoS2samples. Especially, the increase of temperature gave rise to the enlargement of the MoS2 area, yet MoS2nanosheets grew into polygons when the temperature reached 850 ℃. Accordingly, 800 ℃ was determined as the optimal preparation temperature. Meanwhile, Raman spectrum, fluorescence spectrum, scanning electron microscopy and atomic force microscopy were employed to confirm the quality and sizes of MoS2, and analytic results proved that several hundred square micron large area MoS2 thin films with high crystalline quality and uniform thickness could be obtained at preparation temperature of 800 ℃.
Key words:  thermodynamic calculation    enhanced chemical vapor deposition    MoS2    Raman spectroscopy    photoluminescence spectra    large area thin layers
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TQ136.12  
基金资助: 国家自然科学基金(11772286)
作者简介:  龚跃球,副教授,2006年毕业于武汉理工大学,获博士学位。2006年6月到湘潭大学工作至今。主要从事铁电薄膜、二维过渡金属硫化物及其器件的制备。
引用本文:    
龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
GONG Yueqiu, SHI Xiaoyu, LI Jingbing, XIE Shuhong. Preparing Large Area MoS2 Thin Layers by Improved Chemical Vapor Deposition Under Instruction of Thermodynamic Calculations. Materials Reports, 2019, 33(22): 3708-3711.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110101  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3708
[1] Wang Q H, Kalantarzadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7(11), 699.
[2] Boeker T, Severin R, Mueller A, et al. Physical Review B, 2001,64(23),235305.
[3] Gu P C, Zhang K L, Feng Y L, et al. Acta Physica Sinica, 2016(1),24(in Chinese).顾品超, 张楷亮, 冯玉林, 等.物理学报, 2016(1),24.
[4] Mak K F, Lee C, Hone J, et al. Physical Review Letters, 2010,105(13),136805.
[5] Joensen P, Frindt R F, Morrison S R. Materials Research Bulletin, 1986, 21, 457.
[6] Jonathan N Coleman, Mustafa Lotya, Arlene O’Neill,et al. Science, 2011, 331(6017), 568.
[7] Zhou X, Xu B, Lin Z, et al. Journal of Nanoscience & Nanotechnology, 2014, 14(9), 7250.
[8] Kapolnek D, Wu X H, Heying B, et al. Applied Physics Letters, 1995, 67(11),1541.
[9] Mattevi C, Kim H, Chhowalla M. Journal of Materials Chemistry, 2011, 21(10),3324.
[10] Kang Y N,Gao Q, et al. Materials Review, 2018, 32(S1),68(in Chinese).亢一娜, 高强,等.材料导报, 2018, 32(专辑31), 68.
[11] Lin X J, Sun M X, Hu M Y, et al. Materials Review B:Research Papers,2018, 32(4), 1213(in Chinese).林小靖, 孙明轩, 胡梦媛, 等.材料导报:研究篇, 2018, 32(4),1213.
[12] Mak K F. Science, 2014, 344(6191), 1489.
[13] Perkgoz N K, Bay M. Nano-Micro Letters, 2016, 8(1), 70.
[14] Weast R C. CRC handbook of chemistry and physics, CRC Press,USA,1989.
[15] Youmin R, Ye F, Ai L K, et al. Nanoscale, 2014, 6(20),12096.
[16] Ji Q Q, Zhang Y, Zhang Y F,et al. Chemical Society Reviews, 2015, 44(9),2587.
[17] Voter A F. Introduction to the kinetic monte carlo method. Master’s Thesis, Los Alamos National Laboratory,USA, 2007.
[18] Yoreo J J D, Vekilov P G. Reviews in Mineralogy & Geochemistry, 2003, 54(1), 57.
[19] Tonndorf P, Schmidt R, Bottger P, et al. Optics Express, 2013, 21(4), 4908.
[20] Feng W. Physical Review Letters, 2012, 108(19), 196802.
[21] Zeng Z, Yin Z, Huang X, et al. Angewandte Chemie, 2011, 50(47),11093.
[1] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[2] 王翠萍, 牛泽明, 潘云炜, 陈悦超, 杨双, 郭毅慧, 卢勇, 韩佳甲, 刘兴军. Co-Ni-W三元系相图的实验测定与热力学计算[J]. 材料导报, 2019, 33(20): 3460-3466.
[3] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[4] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[5] 林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬. 水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能[J]. 《材料导报》期刊社, 2018, 32(8): 1213-1217.
[6] 王杏娟,田阔,樊亚鹏,王浩楠,吴哲. TiO2对连铸三元无氟CaO-SiO2-TiO2渣系特性的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2100-2104.
[7] 熊建功,张创伟,王 康,孔令仪,赵弋菲,陈 龙,李永涛. Sr、Co共掺多铁性材料BiFeO3的性能[J]. 《材料导报》期刊社, 2018, 32(10): 1582-1586.
[8] 白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed