Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 12-15    https://doi.org/10.11896/j.issn.1005-023X.2017.016.003
  材料研究 |
水热法合成不同形貌的二硫化钼及其电容性能*
白利忠1, 王彦辉1, 张增一2, 李方1, 魏建飞1
1 中北大学材料科学与工程学院, 太原 030051;
2 太原市知达常青藤中学校, 太原 030000
Hydrothermal Synthesis and Capacitance Performance of Molybdenum Disulfide with Different Morphologies
BAI Lizhong1, WANG Yanhui1, ZHANG Zengyi2, LI Fang1, WEI Jianfei1
1 School of Materials Science and Engineering, North University of China, Taiyuan 030051;
2 Ivy League School of Taiyuan, Taiyuan 030000
下载:  全 文 ( PDF ) ( 1308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钼酸铵作为钼源,硫脲作为硫源和还原剂,通过添加不同的表面活性剂(CTAB、SDBS和PVP),采用水热法成功合成了不同形貌和尺寸的二硫化钼。形貌和结构表征(XRD、Raman、SEM和TEM等)表明,通过改变反应体系中的表面活性剂可以控制二硫化钼样品的形貌与晶粒尺寸。电化学电容性能测试(循环伏安曲线、恒电流充放电测试和电化学交流阻抗谱)表明,二硫化钼的形貌与尺寸对其电容性能有显著影响。在电流密度为1 A/g时,添加SDBS制备的片状二硫化钼初始比容量高达221.2 F/g,经过500次循环后比容量仍保持在148 F/g,表现出优异的循环稳定性,是一种性能优异的超级电容器电极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白利忠
王彦辉
张增一
李方
魏建飞
关键词:  二硫化钼  水热法  表面活性剂  电容性能  超级电容器    
Abstract: MoS2 with different morphologies were synthesized via hydrothermal method by using different types of surfactants (CTAB, SDBS or PVP), and ammonium molybdate and thiourea as molybdenum and sulfur sources, respectively. The characterization for microstructure and morphology of the products by XRD, Raman, SEM and TEM showed that the shape and size of MoS2 could be controlled by altering the surfactants in the reaction system. Electrochemical performance determinations, including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS), indicated that the shape and size of MoS2 had a remarkable influence on its capacitive performance. The MoS2 nanosheets synthesized with the presence of SDBS possessed a high specific capacitance of 221.2 F/g and a stable capacitance retention of 148 F/g after 500 cycles at a current density of 1 A/g, suggesting good cycling stability. Therefore, the MoS2 nanosheets will be a suitable candidate for electrochemical supercapacitor applications.
Key words:  molybdenum disulfide    hydrothermal method    surfactant    capacitive performance    supercapacitor
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TM912.9  
基金资助: 中北大学青年科学基金(XJJ2016010)
作者简介:  白利忠:男,1986年生,博士,副教授,研究方向为新型储能材料及其应用 E-mail:lzbai@nuc.edu.cn
引用本文:    
白利忠, 王彦辉, 张增一, 李方, 魏建飞. 水热法合成不同形貌的二硫化钼及其电容性能*[J]. 《材料导报》期刊社, 2017, 31(16): 12-15.
BAI Lizhong, WANG Yanhui, ZHANG Zengyi, LI Fang, WEI Jianfei. Hydrothermal Synthesis and Capacitance Performance of Molybdenum Disulfide with Different Morphologies. Materials Reports, 2017, 31(16): 12-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.003  或          https://www.mater-rep.com/CN/Y2017/V31/I16/12
1 Lu X, Zhai T, Zhang X, et al. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible superca-pacitors[J]. Adv Mater,2012,24(7):938.
2 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater,2008,7(11):845.
3 Huang K J, Zhang J Z, Shi G W, et al. Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material[J]. Electrochim Acta,2014,132:397.
4 Shi J, Li X, He G, et al. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. J Mater Chem A,2015, 3(41):20619.
5 Tu C C, Lin L Y, Xiao B C, et al. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets[J]. J Power Sources,2016,320:78.
6 Xu L M, Ma L, Xu X Y, et al. Molybdenum disulfide microflowers assembled by few-layered nanosheets and their electrochemical performance for supercapacitor[J]. Mater Lett,2016,173:84.
7 Hu K H, Hu X G, Xu Y F, et al. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange[J]. J Mater Sci,2010,45(10):2640.
8 Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol,2011,6(3): 147.
9 Hwang H, Kim H, Cho J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Lett,2011,11(11):4826.
10 Ramadoss A, Kim T, Kim G S, et al. Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications[J]. New J Chem,2014,38(6):2379.
11 Xiao J, Choi D, Cosimbescu L, et al. Exfoliated MoS2 nanocompo-site as an anode material for lithium ion batteries[J]. Chem Mater,2010,22(16):4522
12 Mdleleni M M, Hyeon T, Suslick K S. Sonochemical synthesis of nanostructured molybdenum sulfide[J]. J Am Chem Soc,1998,120(24):6189.
13 Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes[J]. Science,1995,267(5195):222
14 Zelenski C M, Dorhout P K. Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2[J]. J Am Chem Soc,1998,120(4):734.
15 Tang G, Wang Y, Chen W, et al. Hydrothermal synthesis and cha-racterization of novel flowerlike MoS2 hollow microspheres[J]. Mater Lett,2013,100:15.
16 Tian Y, Zhao J, Fu W, et al. A facile route to synthesis of MoS2 nanorods[J]. Mater lett,2005,59(27):3452.
17 Nagaraju G, Tharamani C N, Chandrappa G T, et al. Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate[J]. Nanosc Res Lett,2007,2(9):461
18 Ma L, Huang G, Chen W, et al. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage[J]. J Power Sources,2014,264(1):262.
19 Wang X, Zhang Z, Chen Y, et al. Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties[J]. J Alloys Compd,2014,600:84.
20 Pandey K, Yadav P, Mukhopadhyay I. Electrochemical and electronic properties of flower-like MoS2 nanostructures in aqueous and ionic liquid media[J]. RSC Adv,2015,5(71):57943.
21 Krishnamoorthy K, Veerasubramani G K, Radhakrishnan S, et al. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures[J]. Mater Res Bull,2014,50:499.
22 Du X, Guo P, Song H, et al. Graphene nanosheets as electrode material for electric double-layer capacitors[J]. Electrochim Acta,2010,55(16):4812.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 黄霄伊, 代朝猛, 游学极, 李思, 童汪凯, 李继香. 地下水低渗透区重非水相液体(DNAPL)的增渗增移技术综述[J]. 材料导报, 2024, 38(6): 22120129-8.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[7] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[8] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[9] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[10] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[11] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[12] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[13] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[14] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[15] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed