Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23100011-11    https://doi.org/10.11896/cldb.23100011
  电化学能源材料与器件 |
废轮胎裂解炭黑在能源存储及转换中的应用进展
陈美玲1, 孙艳芝1, 吴玉锋2, 袁浩然3, 潘军青1,*
1 北京化工大学化学学院化工资源有效利用国家重点实验室,北京 100029
2 北京工业大学材料与制造学部,北京 100124
3 中国科学院广州能源所,广州 510610
Advances in the Application of Waste Tire Pyrolysis Carbon Black for Energy Storage and Conversion
CHEN Meiling1, SUN Yanzhi1, WU Yufeng2, YUAN Haoran3, PAN Junqing1,*
1 State Key Laboratory of Effective Utilization of Chemical Resources, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
2 Department of Materials and Manufacturing, Beijing Institute of Technology, Beijing 100124, China
3 Guangzhou Energy Institute, Chinese Academy of Sciences, Guangzhou 510610, China
下载:  全 文 ( PDF ) ( 58442KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球每年大量报废的废轮胎产生引起严重的资源浪费和环境污染等问题,热裂解作为废轮胎高效的最终处理方式之一获得了广泛的应用。裂解炭黑作为废轮胎裂解主要副产物,它的高值化利用有利于推动废轮胎裂解行业健康发展和价值链提升。该裂解炭黑含有高达75%~81%的无定形碳,经过纯化(除灰分)和改性处理可获得具有与商品炭黑导电性相当的多孔碳材料,在能源存储和能源转换方面有着日益重要的应用。本文结合废轮胎裂解炭黑纯化方法以及改性方式,主要围绕裂解炭黑在超级电容器、二次电池和电催化等方面的研究进展,对裂解炭黑资源化研究和应用现状等进行综述分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈美玲
孙艳芝
吴玉锋
袁浩然
潘军青
关键词:  废轮胎  裂解炭黑  超级电容器  二次电池  电催化    
Abstract: With the rapid development of vehicles, plenty of waste tires are produced globally, resulting in serious resource waste and environmental pollution, etc. The pyrolysis process is considered a high-efficiency method for the final treatment of waste tires and has obtained wide application. As a main by-product of the waste tire pyrolysis process, the high-value recycling and utilization of pyrolytic carbon black(CBp) is conducive to the healthy development of the pyrolysis industry and upgrading in full value chains. The CBp contains 75%—81% amorphous carbon, which can be demineralized and modified to obtain porous carbon materials with enhanced electrical conductivity and other properties comparable to commercial carbon black, demonstrating an important role in energy storage and energy conversion applications. This paper combines the purification method of CBp from waste tires and the modification method, mainly focusing on the research progress of CBp in supercapacitors, se-condary batteries and electrocatalysis, etc., and reviews and analyzes the current situation of CBp resourcefulness research and application.
Key words:  waste tire    pyrolytic carbon black    supercapacitors    secondary battery    electrocatalysis
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ330.381  
基金资助: 国家重点研发计划项目(2019YFC1908304;2023YFC3900040);国家自然科学基金(52070007)
通讯作者:  *潘军青,北京化工大学化学学院教授、博士研究生导师。2002年7月在北京化工大学理学院本科毕业,2007年7月在北京化工大学化学工程学院博士毕业。目前主要从事新型MOF衍生碳材料及其在超级电容器和钠离子电池的应用,以及废轮胎和废电池固废清洁资源化等方面的研究工作。以通信作者累计发表SCI论文170余篇,部分研究论文发表在Nature Communications、Advanced Materials、Advanced Energy Materials、Advanced Science、Small、Carbon、J. Power Sources和ACS Applied Materials & Interfaces等期刊上。jqpan@buct.edu.cn   
作者简介:  陈美玲,2021年6月于四川文理学院获得工学学士学位,现为北京化工大学化学学院硕士研究生,在潘军青教授的指导下进行废轮胎裂解炭黑高值化研究。目前主要研究领域为炭黑负载高效析氧反应催化剂及其在湿法回收电解铅中的应用。
引用本文:    
陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
CHEN Meiling, SUN Yanzhi, WU Yufeng, YUAN Haoran, PAN Junqing. Advances in the Application of Waste Tire Pyrolysis Carbon Black for Energy Storage and Conversion. Materials Reports, 2024, 38(8): 23100011-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100011  或          https://www.mater-rep.com/CN/Y2024/V38/I8/23100011
1 Hejna A, Korol J, Przybysz-Romatowska M, et al. Waste Management, 2020, 108, 106.
2 Tang X, Chen Z, Liu J, et al. Journal of Hazardous Materials, 2021, 402, 123516.
3 Islam M M U, Li J, Wu Y F, et al. Resources, Conservation and Recycling, 2022, 184, 106390.
4 Sivaraman S, Michael A N, Venkatachalam P, et al. Chemosphere, 2022, 295, 133797.
5 Lebreton B, Tuma A. International Journal of Production Economics, 2006, 104(2), 639.
6 Saputra R, Walvekar R, Khalid M, et al. Chemosphere, 2021, 265, 129033.
7 Sienkiewicz M, Kucinska-Lipka J, Janik H, et al. Waste Management, 2012, 32(10), 1742.
8 Jiang G, Guo J, Sun Y, et al. Journal of Energy Storage, 2021, 44, 103372.
9 Shahrokhi-Shahraki R, Benally C, El-Din M G, et al. Chemosphere, 2021, 264, 128455.
10 Hou S, Zhang D, Xie Z, et al. Science China Technological Sciences, 2022, 65(10), 2337.
11 Zhi M, Yang F, Meng F, et al. ACS Sustainable Chemistry & Enginee-ring, 2014, 2(7), 1592.
12 Zhao P, Han Y, Dong X, et al. ECS Journal of Solid State Science and Technology, 2015, 4(7), M35.
13 Martínez J D, Cardona-Uribe N, Murillo R, et al. Waste Management, 2019, 85, 574.
14 Mui E L K, Cheung W H, Valix M, et al. Journal of Colloid and Interface Science, 2010, 347(2), 290.
15 López F A, Centeno T A, Rodríguez O, et al. Journal of the Air & Waste Management Association, 2013, 63(5), 534.
16 Banar M, Özkan A, Akyıldız V, et al. Journal of Material Cycles and Waste Management, 2015, 17(1), 125.
17 Tang H, Hu H, Li A, et al. Fuel, 2021, 301, 121019.
18 Zhang X, Li H, Cao Q, et al. Waste Management & Research, 2018, 36(5), 436.
19 Menares T, Herrera J, Romero R, et al. Waste Management, 2020, 102, 21.
20 Abioye A M, Ani F N. Renewable and Sustainable Energy Reviews, 2015, 52, 1282.
21 Wang H, Liu J, Chen Z, et al. Electrochimica Acta, 2017, 230, 236.
22 Wang Y Z, Tang Z H, Shen S L, et al. New Carbon Materials, 2022, 37(2), 321.
23 Chen C C, Huang Y H, Chien H J. Sustainable Chemistry and Pharmacy, 2021, 24, 100535.
24 Han Y, Zhao P P, Dong X T, et al. Frontiers of Materials Science, 2014, 8(4), 391.
25 Bello A, Momodu D Y, Madito M J, et al. Materials Chemistry and Phy-sics, 2018, 209, 262.
26 Boota M, Paranthaman M P, Naskar A K, et al. ChemSusChem, 2015, 8(21), 3576.
27 Jiang G, Chen M, Sun Y, et al. Journal of Energy Storage, 2023, 63, 106955.
28 Snook G A, Kao P, Best A S. Journal of Power Sources, 2011, 196(1), 1.
29 Wang C, Li D, Zhai T, et al. Energy Storage Materials, 2019, 23, 499.
30 Wu B, Liu B, Yuwen C, et al. Waste and Biomass Valorization, 2023, 14(6), 1969.
31 Hou S, Xie Z, Zhang D, et al. Environmental Research, 2023, 238, 117071.
32 Demirocak D E, Srinivasan S S, Stefanakos E K. Applied Sciences, 2017, 7(7), 731.
33 Mayer J K, Bockholt H, Kwade A. Journal of Power Sources, 2022, 529, 231259.
34 Gauthier N, Agrawal A, Dubrunfaut O, et al. Electrochimica Acta, 2023, 437, 141495.
35 Naskar A K, Bi Z, Li Y, et al. RSC Advances, 2014, 4(72), 38213.
36 Gnanaraj J S, Lee R J, Levine A M, et al. Sustainability, 2018, 10(8), 2840.
37 Shilpa R, Kumar R, Sharma A. Journal of Applied Electrochemistry, 2018, 48(1), 1.
38 Veldevi T, Raghu S, Kalaivani R A, et al. Chemosphere, 2022, 288, 132438.
39 Teng Y, Liu H, Liu D, et al. Journal of Colloid and Interface Science, 2019, 554, 220.
40 Wang X, Zhou L, Li J, et al. Materials, 2021, 14(9), 2178.
41 Djuandhi L, Gaikwad V, Cowie B C C, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(20), 6972.
42 Li Y, Paranthaman M P, Akato K, et al. Journal of Power Sources, 2016, 316, 232.
43 Gong H, Wang D, Jiang Y, et al. Materials Letters, 2021, 285, 128983.
44 Wu W, Zhang Y, Ding D, et al. Advanced Materials, 2018, 30(4), 1704745.
45 Kouchachvili L, Hataley B, Geddis P, et al. International Journal of Hydrogen Energy, 2024, 52, 1153.
46 Passaponti M, Lari L, Bonechi M, et al. Energies, 2020, 13(21), 5646.
47 Ayanoğlu A, Yumrutaş R. Energy Conversion and Management, 2016, 111, 261.
48 Wang K, Xu Y, Duan P, et al. Waste Management, 2019, 86, 1.
49 Chen W, Feng H, Shen D, et al. Science of the Total Environment, 2018, 618, 804.
50 Wang Y, Han C, Xie P, et al. Journal of Electroanalytical Chemistry, 2022, 904, 115908.
51 Hood Z D, Yang X, Li Y, et al. Journal of the Electrochemical Society, 2018, 165(14), H881.
52 Liu J, Sun X, Song P, et al. Advanced Materials, 2013, 25(47), 6879.
53 Muhyuddin M, Testa D, Lorenzi R, et al. Electrochimica Acta, 2022, 433, 141254.
54 Lee G, Kang G S, Jang J H, et al. International Journal of Energy Research, 2022, 46(4), 4645.
55 Passaponti M, Rosi L, Savastano M, et al. Journal of Power Sources, 2019, 427, 85.
56 Passaponti M, Lari L, Bonechi M, et al. Energies, 2020, 13(21), 5646.
57 Oh J, Park S, Jang D, et al. Carbon, 2019, 145, 481.
58 Veksha A, Latiff N M, Chen W, et al. Carbon, 2020, 167, 104.
59 Kang G S, Lee G, Cho S Y, et al. Applied Surface Science, 2021, 548, 149027.
60 Wang X, Gan X, Hu T, et al. Advanced Materials, 2017, 29(4), 1603617.
61 Gan X, Lv R, Wang X, et al. Carbon, 2018, 132, 512.
62 Guo Y, Wang Y, Huang Z, et al. Carbon, 2022, 194, 303.
63 Jiang E, Song N, Hong S, et al. International Journal of Hydrogen Energy, 2022, 47(37), 16544.
64 Zhu Y, Zhang T, Lee J Y. ChemElectroChem, 2018, 5, 583.
65 Fan T, Yin F, Wang H, et al. International Journal of Hydrogen Energy, 2017, 42(27), 17376.
66 Pi Y, Shao Q, Wang P, et al. Advanced Functional Materials, 2017, 27(27), 1700886.
67 Jiang G, Chen M, Sun Y, et al. Dalton Transactions, 2024, 53, 1121.
68 Kong X, Niu J, Li M, et al. Waste Management, 2022, 143, 15.
69 Zeng Q, Yang G, Chen J, et al. Carbon, 2023, 202, 1.
70 Torregrosa-Rivero V, Sánchez-Adsuar M S, Illán-Gómez M J. Catalysis Today, 2023.
71 Teng Z, Zhang Z, Li X. Synthetic Metals, 2023, 293, 117256.
72 Zhang C, Liang X, Liu S. International Journal of Hydrogen Energy, 2011, 36(15), 8902.
73 Ji R, Yu K, Lou L L, et al. Inorganic Chemistry Communications, 2012, 25, 65.
74 Ayoob A K, Fadhil A B. Fuel, 2020, 264, 116754.
75 Sánchez-Olmos L A, Medina-Valtierra J, Sathish-Kumar K. Environmental Progress & Sustainable Energy, 2017, 36(2), 619.
76 Zhou Q, Zarei A, De Girolamo A, et al. Journal of Analytical and Applied Pyrolysis, 2019, 139, 167.
77 Al-Rahbi A S, Williams P T. Applied Energy, 2017, 190, 501.
78 Zhang M I A L L. Energy Research, 2021, 46(3), 3634.
79 Suarez-Escobar A F, Conde-Rivera L R, Lopez-Suarez F E, et al. Topics in Catalysis, 2021, 64(1), 51.
80 Conde-Rivera L R, Suarez-Escobar A F, Marin-Perez J J, et al. Mate-rials Letters, 2021, 291, 129590.
81 Singh K, Guillen C J d J, Dinic F, et al. ACS Materials Letters, 2020, 2(7), 798.
82 Davis E M, Bergmann A, Zhan C, et al. Nature Communications, 2023, 14(1), 4791.
83 Wang M, Wang Y, Xie W, et al. International Journal of Hydrogen Energy, 2023, 48(52), 19995.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[3] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[4] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[8] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[9] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[10] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[11] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[12] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[13] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[14] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[15] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed