Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040365-7    https://doi.org/10.11896/cldb.22040365
  无机非金属及其复合材料 |
MoS2/Ni3S2/NF双功能电催化剂用于高效全水解
贾飞宏, 卫学玲, 包维维, 邹祥宇*
陕西理工大学材料科学与工程学院,陕西 汉中 723000
MoS2/Ni3S2/NF Bifunctional Electrocatalysts for Efficient Overall Water Splitting
JIA Feihong, WEI Xueling, BAO Weiwei, ZOU Xiangyu*
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
下载:  全 文 ( PDF ) ( 19174KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调控水热反应时间,采用一步水热法合成泡沫镍(NF)自支撑的MoS2/Ni3S2/NF异质结构阵列,采用XRD、XPS、SEM和EDS对MoS2/Ni3S2/NF电催化剂进行物相分析和形貌表征,并在1.0 mol·L-1 KOH碱性电解液中对其电催化析氢反应(HER)和析氧反应(OER)性能进行了测试。结果表明,当HER和OER的电流密度升高至100 mA·cm-2时,水热反应4 h后得到最优MoS2/Ni3S2/NF-4复合电极分别具有196 mV和310 mV的低过电位,并分别表现出30 mV·dec-1和89.6 mV·dec-1的低塔菲尔斜率。另外,MoS2/Ni3S2/NF-4异质结构作为双功能电催化剂,电流密度达到10 mA·cm-2时电解槽运行需要1.50 V的低电压,且在碱性条件下具备良好的稳定性,100 h内性能无明显变化,可见MoS2/Ni3S2/NF钟乳石棒状阵列可成为高效全水解的双功能电催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾飞宏
卫学玲
包维维
邹祥宇
关键词:  电催化  双功能电催化剂  析氢反应(HER)  析氧反应(OER)  全水解    
Abstract: By adjusting the hydrothermal reaction time, the nickel foam(NF) self-supporting MoS2/Ni3S2/NF heterostructure array was synthesized by one-step hydrothermal method. The phase analysis and morphology characterization of MoS2/Ni3S2/NF electrocatalysts were analyzed by XRD, XPS, SEM and EDS. The electrocatalytic hydrogen evolution reaction(HER) and oxygen evolution reaction (OER) properties in 1.0 mol·L-1 KOH alkaline electrolyte were tested. The results show that when the current density of HER and OER increases to 100 mA·cm-2, the optimal MoS2/Ni3S2/NF-4 composite electrode obtained after hydrothermal reaction for 4 h has low overpotential of 196 mV and 310 mV respectively, and shows low Tafel slope of 30 mV·dec-1 and 89.6 mV·dec-1, respectively. In addition, MoS2/Ni3S2/NF-4 heterostructure is used as a bifunctional electrocatalyst. When the current density reaches 10 mA·cm-2, the electrolytic cell needs a low voltage of 1.50 V, and has good stability under alkaline conditions. There is no significant change in performance within 100 h. It can be seen that MoS2/Ni3S2/NF stalactite rod array can become a bifunctional electrocatalyst for high-efficiency overall water splitting.
Key words:  electrocatalysis    bifunctional electrocatalyst    hydrogen evolution reaction (HER)    oxygen evolution reaction (OER)    overall water splitting
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  O614.81  
基金资助: 国家自然科学基金(51504147);陕西理工大学校级科研基金(SLGQD13(2)-18)
通讯作者:  *邹祥宇,陕西理工大学材料科学与工程学院副教授、硕士研究生导师。2013年东北大学冶金物理化学专业博士毕业。目前主要从事光电催化在环境与能源方面的应用以及光电催化过程中热力学及动力学的研究。在国内外学术期刊发表论文40余篇。86249662@qq.com   
作者简介:  贾飞宏,2021年7月毕业于陕西理工大学,获得工学学士学位,现为陕西理工大学材料科学与工程学院硕士研究生,主要从事新能源材料制备及性能研究。
引用本文:    
贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
JIA Feihong, WEI Xueling, BAO Weiwei, ZOU Xiangyu. MoS2/Ni3S2/NF Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Materials Reports, 2024, 38(4): 22040365-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040365  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22040365
1 Turner J A. Science, 2004, 305(5686), 972.
2 Fan C, Yue X, Shen X, et al. ChemElectroChem, 2021, 8(4), 665.
3 Fabbri E, Habereder A, Waltar K, et al. Catalysis Science & Technology, 2014, 4(11), 3800.
4 Li X, Hao X, Abudula A, et al. Journal of Materials Chemistry A, 2016, 4(31), 11973.
5 Zhang J, Wang T, Pohl D, et al. Angewandte Chemie, 2016, 128(23), 6814.
6 Jiang K, Liu B, Luo M, et al. Nature Communications, 2019, 10(1), 1.
7 Kuo D Y, Paik H, Kloppenburg J, et al. Journal of the American Chemical Society, 2018, 140(50), 17597.
8 Qin J F, Yang M, Chen T S, et al. International Journal of Hydrogen Energy, 2020, 45, 2745.
9 Tao L, Qiao M, Jin R, et al. Angewandte Chemie, 2019, 131(4), 1031.
10 Gao X, Zhou Y, Liu S, et al. Applied Surface Science, 2020, 502, 144155.
11 Xue Y, Zuo Z, Li Y, et al. Small, 2017, 13(31), 1700936.
12 Mu W N, Wang L X, Wang Q, et al. Materials Reports, 2021, 35(24), 24026(in Chinese).
穆伟娜, 王力霞, 王琼, 等. 材料导报, 2021, 35(24), 24026.
13 Wang X D, Xu Y F, Rao H S, et al. Energy & Environmental Science, 2016, 9(4), 1468.
14 Gao M R, Liang J X, Zheng Y R, et al. Nature Communications, 2015, 6(1), 1.
15 Wu B, Qian H, Nie Z, et al. Journal of Energy Chemistry, 2020, 46, 178.
16 Dong J, Zhang F Q, Yang Y, et al. Applied Catalysis B: Environmental, 2019, 243, 693.
17 Hinnemann B, Moses P G, Bonde J, et al. Journal of the American Chemical Society, 2005, 127(15), 5308.
18 Zhang L, Liu K, Wong A B, et al. Nano Letters, 2014, 14(11), 6418.
19 Jaramillo T F, Jørgensen K P, Bonde J, et al. Science, 2007, 317(5834), 100.
20 Lu Q, Yu Y, Ma Q, et al. Advanced Materials, 2016, 28(10), 1917.
21 Narasimman R, Waldiya M, Jalaja K, et al. International Journal of Hydrogen Energy, 2021, 46(11), 7759.
22 Xue J Y, Li F L, Zhao Z Y, et al. Dalton Transactions, 2019, 48(32), 12186.
23 Yang Y, Zhang K, Lin H, et al. ACS Catalysis, 2017, 7(4), 2357.
24 Liang Y, Li Y, Wang H, et al. Nature Materials, 2011, 10(10), 780.
25 Guo D, Luo Y, Yu X, et al. Nano Energy, 2014, 8, 174.
26 Wang F, Zhu Y, Tian W, et al. Journal of Materials Chemistry A, 2018, 6(22), 10490.
27 Zhang L, Chang C, Hsu C W, et al. Journal of Materials Chemistry A, 2017, 5(37), 19656.
28 Xiong X, Waller G, Ding D, et al. Nano Energy, 2015, 16, 71.
29 Liu N, Yang L, Wang S, et al. Journal of Power Sources, 2015, 275, 588.
30 Lin J, Wang P, Wang H, et al. Advanced Science, 2019, 6(14), 1900246.
31 Jiao S, Yao Z, Xue F, et al. Applied Catalysis B: Environmental, 2019, 258, 117964.
32 Song S, Wang Y, Li W, et al. Electrochimica Acta, 2020, 332, 135454.
33 Feng L L, Yu G, Wu Y, et al. Journal of the American Chemical Society, 2015, 137(44), 14023.
34 Fan R, Zhou J, Xun W, et al. Nano Energy, 2020, 71, 104631.
35 Kong D, Cha J J, Wang H, et al. Energy & Environmental Science, 2013, 6(12), 3553.
36 Kibsgaard J, Chen Z, Reinecke B N, et al. Nature Materials, 2012, 11(11), 963.
37 Fu Y, Pan J, Xiao G, et al. Journal of Materials Science: Materials in Electronics, 2021, 32(12), 16126.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[6] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[7] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[8] 谢发之, 张梦, 张道德, 杨少华, 宋恒帅, 马钰佳, 方亮, 邵永刚. N、P/RC@Pb复合材料在铅碳电池负极中的应用[J]. 材料导报, 2024, 38(19): 23030049-9.
[9] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[10] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[11] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[12] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[13] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[14] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[15] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed