Abstract: The recycling and utilization ofplastic wastes is one of the effective ways to reduce environmental pollution and resource waste. Compared to the traditional mechanical cycle and chemical cycle recycling, the newly emerging photocatalytic and electrocatalytic waste plastic upcycling high value-added chemical technologies have aroused widespread attention due to their mild reaction conditions, high efficiency, and can use renewable energy to drive the reactions. It is expected to realize the circumvention resources of fossil fuel and chemicals development, which is in line with the carbon peaking and carbon neutrality goals. Herein, the latest research progress on photocatalytic and electrocatalytic upcycling of high value-added chemicals from waste plastics in recent years was reviewed, with emphasis on the effects of catalyst types on product types and yields, as well as the reaction paths and mechanisms of different catalysts. Ultimately, in view of the problems with these current technologies, points out the main research directions in future, including the development of efficient photo-/electrocatalytic catalysts to improve the selectivity and yield of high value-added products, theoretical simulation combined with in-situ characterization technologies to explore the mechanisms of catalytic reactions, and the development of efficient catalytic reaction equipment.
通讯作者:
* 孙善富,西安电子科技大学空间科学与技术学院华山准聘副教授、硕士研究生导师。2021年哈尔滨工业大学化学工程与技术学科博士毕业后到西安电子科技大学工作至今。目前主要从事光/电催化、载人航天再生生命保障技术等方面的研究工作。发表SCI论文30余篇,包括ACS Catalysis、Journal of Catalysis、Materials Today Energy、Journal of Colloid and Interface Science等。sunshanfu@xidian.edu.cn
刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
LIU Ruiqi, SUN Shanfu, CHENG Pengfei, WANG Yinglin, HAO Xidong. Recent Progresses in Photocatalytic and Electrocatalytic Upcycling of Plastic Wastes to High Value-added Chemicals. Materials Reports, 2024, 38(20): 23060226-7.
1 Wiesinger H, Wang Z Y, Hellweg S. Environmental Science & Technology, 2021, 55(13), 9339. 2 Rhodes C J. Science Progress, 2018, 101(3), 207. 3 Wang C Y, Liu Y, Xu M, et al. Journal of Industrial Ecology, 2021, 25(5), 1300. 4 Shen M C, Song B, Zeng G M, et al. Environmental Pollution, 2020, 263(Part A), 114469. 5 Damayanti D, Saputri D R, Marpaung D S S, et al. Polymers, 2022, 14, 3133. 6 Geyer R, Jambeck J R, Law K L. Science Advances, 2017, 3(7), e1700782. 7 Chen J L, Wu J, Yang J P, et al. Advanced Science, 2022, 9(6), 2103764. 8 Kane I A, Clare M A, Miramontes E, et al. Science, 2020, 368, 1140. 9 Ina V, Mark C P, Robin J, et al. Angewandte Chemie International Edition, 2020, 59(36), 15402. 10 Chen H, Wan K, Niu B, et al. Chemical Industry and Engineering Progress, 2022, 41(3), 1453 (in Chinese). 陈欢, 万坤, 牛波, 等. 废弃塑料化学回收及升级再造研究进展, 化工进展, 2022, 41(3), 1453. 11 Lahtela V, Hyvärinen M, Kärki T. Polymers, 2019, 11(1), 69. 12 Faraca G, Astrup T. Waste Management, 2019, 95, 388. 13 He P J, Chen L Y, Shao L M, et al. Water Research, 2019, 159, 38. 14 Serrano D P, Aguado J, Escola J M. ACS Catalysis, 2012, 2(9), 1924. 15 Chen H, Wan K, Zhang Y Y, et al. ChemSusChem, 2021, 14(19), 4123. 16 Chen X, Wang Y D, Zhang L. ChemSusChem, 2021, 14(19), 4137. 17 Peng Y J, Wang Y P, Ke L Y, et al. Energy Conversion and Management, 2022, 254, 115243. 18 Lopez G, Artetxe M, Amutio M, et al. Renewable and Sustainable Energy Reviews, 2017, 73, 346. 19 Zhao X H, Korey M, Li K, et al. Chemical Engineering Journal, 2022, 428, 131928. 20 Thiounn T, Smith R C. Journal of Polymer Science, 2020, 58(10), 1347. 21 Ragaert K, Delva L, Van G K. Waste Management, 2017, 69, 24. 22 Chen H, Wan K, Zhang Y Y, et al. Chemistry Sustainability Energy Materials, 2021, 14(19), 4123. 23 Jha K K, Kannan T T M. Materials Today: Proceedings, 2021, 37, 3718. 24 Lee S, Lee Y R, Kim S J, et al. Chemical Engineering Journal, 2023, 454, 140470. 25 Faraca G, Astrup T. Waste Management, 2019, 95, 388. 26 Morici E, Carroccio S C, Bruno E, et al. Polymers, 2022, 14(10), 2038. 27 Chen H, Wan K, Wang Y Q, et al. ChemSusChem, 2021, 14(19), 4123. 28 Sun L L, Cui H J, Ge Q S. Advances in Climate Change Research, 2022, 13(2), 169. 29 Wei Y M, Chen K Y, Kang J N, et al. Engineering, 2022, 14(2), 52. 30 Dong H, Liu Y, Zhao Z, et al. Sustainability Science, 2022, 17, 1741. 31 He J K, Li Z, Zhang X L, et al. Environmental Science and Ecotechnology, 2022, 9, 100134. 32 Tomoji, Kawai, Tadayoshi. Chemistry Letters, 1981, 10(1), 81. 33 Uekert T, Moritz F, Reisner E, et al. Energy & Environmental Science, 2018, 11(10), 2853. 34 Zhang S, Qiao S Z, Wang L, et al. Journal of the American Chemical Society, 2023, 145(11), 6410. 35 Zhu Y, Chai Y, Qiu B C, et al. ACS Catalysis, 2022, 12(20), 12823. 36 Uekert T, Kasap H, Reisner E. Journal of the American Chemical Society, 2019, 141(38), 15201. 37 Jiao X C, Zheng K, Chen Q X, et al. Angewandte Chemie International Edition, 2020, 59(36), 15497. 38 Zhang L W, Feng Y Q, Li K J, et al. iScience, 2020, 23(7), 101326. 39 Ariza-Tarazona M C, Villarreal-Chiu J F, Cedillo-Gonzalez EI, et al. Journal of Hazardous Materials, 2020, 395, 122632. 40 Jiang Y T, Zhang H Y, Hong L F, et al. ChemSusChem, 2023, 16(14), e202300106. 41 Suong T, Elizabeth A, James H, et al. The Catalyst Review Newsletter, 2021, 143(31), 12268. 42 Zhao X H, Ozcan S, Li K, et al. Chemical Engineering Journal, 2022, 428, 131928. 43 Kim J, Jang J, Hilberath T, et al. Nature Synthesis, 2022, 1, 776. 44 Zhang B W, Zhang H Y, Pan Y Y, et al. Chemical Engineering Journal, 2023, 462, 142247. 45 Huang Z L, Liu Z, Qi X T, et al. Journal of the American Chemical Society, 2022, 144(14), 6532. 46 Xu J, Jiao X, Zheng K, et al. National Science Review, 2022, 9(9), nwac011. 47 Qian W Q, Xu S W, Zhang X M, et al. Nano-Micro Letters, 2021, 13, 156. 48 De Luna P, Hahn C, Jaffer S A, et al. Science, 2019, 364(6438), 350. 49 Tang C, Zheng Y, Qiao S Z, et al. Angewandte Chemie International Edition, 2021, 60(36), 19572. 50 Song Y J, Ji K Y, Duan H H, et al. Exploration, 2021, 1(3), 20210050. 51 Sun S F, Jin X L, Zhou X, et al. Journal of Catalysis, 2019, 379, 1. 52 Sun S F, Zhou X, Hong W Z, et al. ACS Catalysis, 2020, 10(16), 9086. 53 Wang J Y, Li X, Zhang T, et al. Applied Catalysis B: Environmental, 2023, 332, 122744. 54 Zhou H, Ren Y, Li Z H, et al. Nature Communications, 2021, 12(1), 4679. 55 Shi R, Liu K S, Liu F L, et al. Chemical Communications, 2021, 57, 12595. 56 Wang J Y, Li X, Zhao Y X, et al. ACS Catalysis, 2022, 12(11), 6722. 57 Si D, Xiong B Y, Chen L S, et al. Chem Catalysis, 2021, 1(4), 941. 58 Liu F L, Gao X T, Shi R, et al. Angewandte Chemie International Edition, 2023, 62(11), e202300094. 59 Liu F L, Gao X T, Shi R, et al. Green Chemistry, 2022, 24, 6571. 60 Wang J Y, Li X, Zhang T, et al. Journal of Physical Chemistry Letters, 2022, 13(2), 622. 61 Yan Y F, Zhou H, Xu S M, et al. Journal of the American Chemical Society, 2023, 145(11), 6144.