Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23060226-7    https://doi.org/10.11896/cldb.23060226
  高分子与聚合物基复合材料 |
光/电催化废塑料升级再造高附加值化学品研究进展
刘睿琦, 孙善富*, 程鹏飞, 王莹麟, 郝熙冬
西安电子科技大学空间科学与技术学院,西安 710126
Recent Progresses in Photocatalytic and Electrocatalytic Upcycling of Plastic Wastes to High Value-added Chemicals
LIU Ruiqi, SUN Shanfu*, CHENG Pengfei, WANG Yinglin, HAO Xidong
School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China
下载:  全 文 ( PDF ) ( 2326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 废塑料的回收利用是降低环境污染和减少资源浪费的有效途径之一,与传统的机械循环和化学循环回收相比,近年来新兴的光催化和电催化废塑料升级再造高附加值化学品技术因其反应条件温和、效率高,且能够利用可再生能源(太阳能、风能等)驱动反应发生,有望实现能源和化学品的脱石化资源、低碳绿色和分布式发展,符合“双碳”发展理念,迅速得到学者们的广泛关注和探讨。综述了近年来有关光催化和电催化废塑料升级再造高附加值化学品的最新研究进展,重点讨论了催化剂类型对产物类型和产率的影响以及不同催化剂的光催化和电催化反应路径和机理,最后针对目前技术存在的问题提出开发高效光/电催化剂以提升高附加值产物选择性和产率、理论模拟结合原位表征技术探究光/电催化反应机理、开发高效催化反应设备是今后光/电催化废塑料升级再造高附加值化学品研究的主要方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘睿琦
孙善富
程鹏飞
王莹麟
郝熙冬
关键词:  废塑料  光催化  电催化  升级再造  高值化学品    
Abstract: The recycling and utilization ofplastic wastes is one of the effective ways to reduce environmental pollution and resource waste. Compared to the traditional mechanical cycle and chemical cycle recycling, the newly emerging photocatalytic and electrocatalytic waste plastic upcycling high value-added chemical technologies have aroused widespread attention due to their mild reaction conditions, high efficiency, and can use renewable energy to drive the reactions. It is expected to realize the circumvention resources of fossil fuel and chemicals development, which is in line with the carbon peaking and carbon neutrality goals. Herein, the latest research progress on photocatalytic and electrocatalytic upcycling of high value-added chemicals from waste plastics in recent years was reviewed, with emphasis on the effects of catalyst types on product types and yields, as well as the reaction paths and mechanisms of different catalysts. Ultimately, in view of the problems with these current technologies, points out the main research directions in future, including the development of efficient photo-/electrocatalytic catalysts to improve the selectivity and yield of high value-added products, theoretical simulation combined with in-situ characterization technologies to explore the mechanisms of catalytic reactions, and the development of efficient catalytic reaction equipment.
Key words:  plastic wastes    photocatalysis    electrocatalysis    upcycling    high value-added chemicals
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TQ320.9  
基金资助: 国家自然科学基金(22205169)
通讯作者:  * 孙善富,西安电子科技大学空间科学与技术学院华山准聘副教授、硕士研究生导师。2021年哈尔滨工业大学化学工程与技术学科博士毕业后到西安电子科技大学工作至今。目前主要从事光/电催化、载人航天再生生命保障技术等方面的研究工作。发表SCI论文30余篇,包括ACS Catalysis、Journal of Catalysis、Materials Today Energy、Journal of Colloid and Interface Science等。sunshanfu@xidian.edu.cn   
作者简介:  刘睿琦,2022年6月于陕西师范大学获得理学学士学位,现为西安电子科技大学空间科学与技术学院研究生。目前主要研究领域为电催化合成有机化学品。
引用本文:    
刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
LIU Ruiqi, SUN Shanfu, CHENG Pengfei, WANG Yinglin, HAO Xidong. Recent Progresses in Photocatalytic and Electrocatalytic Upcycling of Plastic Wastes to High Value-added Chemicals. Materials Reports, 2024, 38(20): 23060226-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060226  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23060226
1 Wiesinger H, Wang Z Y, Hellweg S. Environmental Science & Technology, 2021, 55(13), 9339.
2 Rhodes C J. Science Progress, 2018, 101(3), 207.
3 Wang C Y, Liu Y, Xu M, et al. Journal of Industrial Ecology, 2021, 25(5), 1300.
4 Shen M C, Song B, Zeng G M, et al. Environmental Pollution, 2020, 263(Part A), 114469.
5 Damayanti D, Saputri D R, Marpaung D S S, et al. Polymers, 2022, 14, 3133.
6 Geyer R, Jambeck J R, Law K L. Science Advances, 2017, 3(7), e1700782.
7 Chen J L, Wu J, Yang J P, et al. Advanced Science, 2022, 9(6), 2103764.
8 Kane I A, Clare M A, Miramontes E, et al. Science, 2020, 368, 1140.
9 Ina V, Mark C P, Robin J, et al. Angewandte Chemie International Edition, 2020, 59(36), 15402.
10 Chen H, Wan K, Niu B, et al. Chemical Industry and Engineering Progress, 2022, 41(3), 1453 (in Chinese).
陈欢, 万坤, 牛波, 等. 废弃塑料化学回收及升级再造研究进展, 化工进展, 2022, 41(3), 1453.
11 Lahtela V, Hyvärinen M, Kärki T. Polymers, 2019, 11(1), 69.
12 Faraca G, Astrup T. Waste Management, 2019, 95, 388.
13 He P J, Chen L Y, Shao L M, et al. Water Research, 2019, 159, 38.
14 Serrano D P, Aguado J, Escola J M. ACS Catalysis, 2012, 2(9), 1924.
15 Chen H, Wan K, Zhang Y Y, et al. ChemSusChem, 2021, 14(19), 4123.
16 Chen X, Wang Y D, Zhang L. ChemSusChem, 2021, 14(19), 4137.
17 Peng Y J, Wang Y P, Ke L Y, et al. Energy Conversion and Management, 2022, 254, 115243.
18 Lopez G, Artetxe M, Amutio M, et al. Renewable and Sustainable Energy Reviews, 2017, 73, 346.
19 Zhao X H, Korey M, Li K, et al. Chemical Engineering Journal, 2022, 428, 131928.
20 Thiounn T, Smith R C. Journal of Polymer Science, 2020, 58(10), 1347.
21 Ragaert K, Delva L, Van G K. Waste Management, 2017, 69, 24.
22 Chen H, Wan K, Zhang Y Y, et al. Chemistry Sustainability Energy Materials, 2021, 14(19), 4123.
23 Jha K K, Kannan T T M. Materials Today: Proceedings, 2021, 37, 3718.
24 Lee S, Lee Y R, Kim S J, et al. Chemical Engineering Journal, 2023, 454, 140470.
25 Faraca G, Astrup T. Waste Management, 2019, 95, 388.
26 Morici E, Carroccio S C, Bruno E, et al. Polymers, 2022, 14(10), 2038.
27 Chen H, Wan K, Wang Y Q, et al. ChemSusChem, 2021, 14(19), 4123.
28 Sun L L, Cui H J, Ge Q S. Advances in Climate Change Research, 2022, 13(2), 169.
29 Wei Y M, Chen K Y, Kang J N, et al. Engineering, 2022, 14(2), 52.
30 Dong H, Liu Y, Zhao Z, et al. Sustainability Science, 2022, 17, 1741.
31 He J K, Li Z, Zhang X L, et al. Environmental Science and Ecotechnology, 2022, 9, 100134.
32 Tomoji, Kawai, Tadayoshi. Chemistry Letters, 1981, 10(1), 81.
33 Uekert T, Moritz F, Reisner E, et al. Energy & Environmental Science, 2018, 11(10), 2853.
34 Zhang S, Qiao S Z, Wang L, et al. Journal of the American Chemical Society, 2023, 145(11), 6410.
35 Zhu Y, Chai Y, Qiu B C, et al. ACS Catalysis, 2022, 12(20), 12823.
36 Uekert T, Kasap H, Reisner E. Journal of the American Chemical Society, 2019, 141(38), 15201.
37 Jiao X C, Zheng K, Chen Q X, et al. Angewandte Chemie International Edition, 2020, 59(36), 15497.
38 Zhang L W, Feng Y Q, Li K J, et al. iScience, 2020, 23(7), 101326.
39 Ariza-Tarazona M C, Villarreal-Chiu J F, Cedillo-Gonzalez EI, et al. Journal of Hazardous Materials, 2020, 395, 122632.
40 Jiang Y T, Zhang H Y, Hong L F, et al. ChemSusChem, 2023, 16(14), e202300106.
41 Suong T, Elizabeth A, James H, et al. The Catalyst Review Newsletter, 2021, 143(31), 12268.
42 Zhao X H, Ozcan S, Li K, et al. Chemical Engineering Journal, 2022, 428, 131928.
43 Kim J, Jang J, Hilberath T, et al. Nature Synthesis, 2022, 1, 776.
44 Zhang B W, Zhang H Y, Pan Y Y, et al. Chemical Engineering Journal, 2023, 462, 142247.
45 Huang Z L, Liu Z, Qi X T, et al. Journal of the American Chemical Society, 2022, 144(14), 6532.
46 Xu J, Jiao X, Zheng K, et al. National Science Review, 2022, 9(9), nwac011.
47 Qian W Q, Xu S W, Zhang X M, et al. Nano-Micro Letters, 2021, 13, 156.
48 De Luna P, Hahn C, Jaffer S A, et al. Science, 2019, 364(6438), 350.
49 Tang C, Zheng Y, Qiao S Z, et al. Angewandte Chemie International Edition, 2021, 60(36), 19572.
50 Song Y J, Ji K Y, Duan H H, et al. Exploration, 2021, 1(3), 20210050.
51 Sun S F, Jin X L, Zhou X, et al. Journal of Catalysis, 2019, 379, 1.
52 Sun S F, Zhou X, Hong W Z, et al. ACS Catalysis, 2020, 10(16), 9086.
53 Wang J Y, Li X, Zhang T, et al. Applied Catalysis B: Environmental, 2023, 332, 122744.
54 Zhou H, Ren Y, Li Z H, et al. Nature Communications, 2021, 12(1), 4679.
55 Shi R, Liu K S, Liu F L, et al. Chemical Communications, 2021, 57, 12595.
56 Wang J Y, Li X, Zhao Y X, et al. ACS Catalysis, 2022, 12(11), 6722.
57 Si D, Xiong B Y, Chen L S, et al. Chem Catalysis, 2021, 1(4), 941.
58 Liu F L, Gao X T, Shi R, et al. Angewandte Chemie International Edition, 2023, 62(11), e202300094.
59 Liu F L, Gao X T, Shi R, et al. Green Chemistry, 2022, 24, 6571.
60 Wang J Y, Li X, Zhang T, et al. Journal of Physical Chemistry Letters, 2022, 13(2), 622.
61 Yan Y F, Zhou H, Xu S M, et al. Journal of the American Chemical Society, 2023, 145(11), 6144.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[8] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[9] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[10] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[11] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[12] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[13] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[14] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[15] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed