Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080014-7    https://doi.org/10.11896/cldb.22080014
  无机非金属及其复合材料 |
不同形貌g-C3N4光催化剂的制备及性能
刘月琴1, 王海涛1, 郭建峰2, 赵晓旭1,*, 常娜2,*
1 天津工业大学环境科学与工程学院,天津 300387
2 天津工业大学化学工程与技术学院,天津 300387
Preparation and Performance of g-C3N4 Photocatalysts with Different Morphology
LIU Yueqin1, WANG Haitao1, GUO Jianfeng2, ZHAO Xiaoxu1,*, CHANG Na2,*
1 School of Environmental Science and Technology, Tiangong University, Tianjin 300387, China
2 School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 11490KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作制备了四种形貌的g-C3N4光催化剂,分别为不规则疏松片状g-C3N4-4、不均匀致密颗粒状g-C3N4-8、管状g-C3N4-24以及不规则管状g-C3N4-32。XRD和XPS测试结果证明四种g-C3N4光催化剂的成功制备。光电性能测试结果表明,中空管状g-C3N4-24具有良好的可见光响应、最小的阻抗及最佳的光电流响应,光生电子和空穴的分离效果最好。以碱性品红 (Fuchsin basic) 为模拟污染物,考察g-C3N4-24光催化剂的光催化降解性能,结果表明,在可见光的条件下,90 min内其对碱性品红的降解效果能达到86.7%。最后根据活性物种捕获实验对g-C3N4-24光催化剂的光催化机理进行研究,发现·O2-、h+和·OH均为碱性品红降解过程中的活性物质,其中·O2-为最主要的活性物种。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘月琴
王海涛
郭建峰
赵晓旭
常娜
关键词:  光催化  g-C3N4  中空管状  形貌  可见光    
Abstract: In this work, four g-C3N4 photocatalysts including irregular loose flakes g-C3N4-4, granular g-C3N4-8, tubular g-C3N4-24 and irregular tubular g-C3N4-32 were prepared. The results of XRD and XPS proved that four g-C3N4 photocatalysts were successfully prepared. The results of the photoelectric performance tests showed that the hollow tubular g-C3N4-24 had good visible light response, minimal impedance and best photocurrent response, indicating the best separation of photogenerated electrons and holes. The photocatalytic degradation performance of g-C3N4-24 photocatalyst was investigated by using fuchsin basic as a simulated pollutant, and the results showed that the degradation of basic magenta could reach 86.7% within 90 min under the conditions of visible light. Finally, the mechanism of g-C3N4-24 photocatalyst was investigated based on the active species capture experiment, and it was found that ·O2-,h+ and ·OH were all active species in the degradation process of fuchsin basic, with ·O2- being the most dominant active species.
Key words:  photocatalysis    g-C3N4    hollow tubular    morphology    visible light
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  X703.1  
  TQ426  
基金资助: 天津市科技计划项目(19PTZWHZ00030)
通讯作者:  *常娜,2012年6月毕业于南开大学化学专业,获博士学位,现任天津工业大学化学工程与技术学院教授、博士研究生导师,天津工业大学印染废水资源化利用中外联合研究中心副主任。主要从事新型纳米材料合成及催化性能研究、高性能分离膜制备以及工业废水处理及资源化利用研究。主持国家重点研发计划项目、国家自然科学基金等科研项目10余项;获教育部自然科学奖一等奖1项,天津市科技进步二等奖1项;以第一作者或通信作者发表论文50余篇;授权中国发明专利8项,美国发明专利2项;参编国家标准2项,行业标准2项;参编英文专著1部。zhaoxiaoxu1027@126.com; changna@tiangong.edu.cn   
作者简介:  刘月琴,2020年毕业于山西工学院建筑环境与能源应用工程专业,获得工学学士学位,现为天津工业大学环境科学与工程学院硕士研究生,目前主要从事光催化剂合成及性能研究。
引用本文:    
刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
LIU Yueqin, WANG Haitao, GUO Jianfeng, ZHAO Xiaoxu, CHANG Na. Preparation and Performance of g-C3N4 Photocatalysts with Different Morphology. Materials Reports, 2024, 38(4): 22080014-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080014  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22080014
1 Wang X, Zhou C, Shi R, et al. Nano Research, 2019, 12, 2385.
2 Wang L, Zang L, Shen F, et al. Journal of Colloid and Interface Science, 2022, 622, 336.
3 Li C, Dong X, Zhang Y, et al. Applied Surface Science, 2022, 596, 153471.
4 Wang Y, Liu L, Ma T, et al. Advanced Functional Materials, 2021, 31, 2102540.
5 Xiang H B, Gou J J, Wu L, et al. Materials Reports, 2022, 36(6), 21030152(in Chinese).
向寒宾, 苟浇浇, 吴琳, 等. 材料导报, 2022, 36(6), 21030152.
6 Luo W, Li Y, Wang J, et al. Nano Energy, 2021, 87, 106168.
7 Jiang J, Xiong Z, Wang H, et al. Journal of Materials Science & Technology, 2022, 118, 15.
8 Zhang S, Gao M, Zhai Y, et al. Journal of Colloid and Interface Science, 2022, 622, 662.
9 Ren Y, Zeng D, Ong W J, et al. Chinese Journal of Catalysis, 2019, 40, 289.
10 Wu X, Liu C, Li X, et al. Materials Science in Semiconductor Proces-sing, 2015, 32, 76.
11 Li G, Lian Z, Wang W, et al. Nano Energy, 2019, 19, 446.
12 Zhang M, Sun Y, Chang X, et al. Frontiers in Chemistry, 2021, 9, 652762.
13 Wang S, Li J, Zhang R, et al. Materials Letters, 2017, 198, 61.
14 Mari E, Tsai P C, Eswaran M, et al. Fuel, 2020, 280, 118646.
15 Ge G, Zhao Z. Catalysis Science & Technology, 2019, 9, 266.
16 Cao S, Low J, Yu J, et al. Advanced Materials, 2015, 27, 2150.
17 Che H, Che G, Zhou P, et al. Journal of Colloid and Interface Science, 2019, 547, 224.
18 Chen F, Liu L L, Wu J H, et al. Advanced Materials, 2022, 34, 2202891.
19 Zhou B, Waqas M, Yang B, et al. Applied Surface Science, 2020, 506, 145004.
20 Wu T, He Q, Liu Z, et al. Journal of Hazardous Materials, 2022, 424, 127177.
21 Dong H J, Zhang X X, Li J M, et al. Applied Catalysis B: Environmental, 2020, 263, 118270.
22 Shi Y, Zhao Q, Li J, et al. Applied Catalysis B: Environmental, 2022, 308, 121216.
23 Du R, Xiao K, Li B, et al. Chemical Engineering Journal, 2022, 441, 135999.
24 Yu J, Wang G, Cheng B, et al. Applied Catalysis B: Environmental, 2007, 69, 171.
25 Piao H, Choi G, Jin X, et al. Nano-micro Letters, 2022, 14, 55.
26 Chen Z J, Guo H, Liu H Y, et al. Chemical Engineering Journal, 2022, 438, 135471.
27 Zhang Q, Chen J, Gao X, et al. Applied Catalysis B: Environmental, 2022, 313, 121443.
28 Wang P, Zhan S, Wang H, et al. Applied Catalysis B: Environmental, 2018, 230, 210.
29 Hao Q, Jia G, Wei W, et al. Nano Research, 2019, 13, 18.
30 Tong Z, Yang D, Sun Y, et al. Small, 2016, 12, 4093.
31 Wu T, Liu Z, Shao B, et al. Chemical Engineering Journal, 2022, 447, 137332.
32 Meng F P, Wang J, Tian W J, et al. Journal of Colloid and Interface Science, 2022, 608, 1334.
33 Gayathri M, Sakar M, Satheeshkumar E, et al. Journal of Materials Science-Materials in Electronics, 2022, 32(12), 9347.
34 Li H C, Zang L L, Shen F T, et al. RSC Advances, 2021, 11(30), 18519.
35 Zhao C, Liao Z Z, Liu W, et al. Journal of Hazardous Materials, 2020, 381, 120957.
36 Zhao Z W, Zhang W, Liu W, et al. Science of the Total Environment, 2020, 742, 140642.
37 Zeng Y S, Qiao Y, Liu Z, et al. Chemical Engineering Journal, 2022, 435, 134918.
38 Zhang C, Zhou Y, Wang W J, et al. Applied Surface Science, 2020, 527, 146757.
39 Zhang W J, Xu D T, Wang F J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 130079.
40 Lian X Y, Chen S H, He F Y, et al. Separation and Purification Technology, 2022, 286, 120449.
41 Tian Y N, Zhang J Y, Wang W Y, et al. Environmental Research, 2022, 209, 112889.
42 Zhang C, Ouyang Z, Yang Y, et al. Chemical Engineering Journal, 2022, 448, 137370.
43 Li X, Fang G, Tian Q, et al. Applied Surface Science, 2022, 584, 152642.
[1] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[2] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[3] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[4] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[5] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[6] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[7] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[8] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[9] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[10] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[11] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[12] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[13] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[14] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[15] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed