Recent Research Progress of MOFs Derivatives for Urea Oxidation
ZHANG Xia1,2, WU Ying1,*, YUEN Mufung3, WANG Chundong2,*
1 School of Chemistry and Chemical Engineering, Tarim University, Alar 843300, Xinjiang, China 2 School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China 3 School of Science and Technology, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, Guangdong, China
Abstract: Urea oxidation reaction (UOR) plays an essential role in reducing the strain of contemporary hydrogen energy production and wastewater treatment, and the development of electrocatalysts with superior performance can aid in lowering the amount of energy required. Derivatives of metal-organic frameworks (MOFs) materials have garnered a lot of attention for their potential as electrocatalysts, by addressing the inherent flaws of poor conductivity and stability. With reference to the design and construction of MOF-derivatives, we review and summarize some studies based on: (i) the reaction mechanism of nickel-based/non-nickel-based UOR; (ii) strategies to improve the electronic conductivity by means of structural modulation, morphology control, interfacial engineering, and defect engineering, outlining the change in physical properties of the materials with respect to the catalytic activity correlation;(iii) analyses of the applications of UOR-based MOFs derivatives. Finally, we give some perspectives on the most recent research challenges and developments in UOR.
1 Li Y, Wei X, Chen L, et al. Angewandte Chemie-International Edition, 2021, 60, 19550. 2 Lu C, Tran C D, Zhang J, et al. ACS Nano, 2017, 11, 3933. 3 Holladay J D, Hu J, King D L, et al. Catalysis today, 2009, 139, 244. 4 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355, 4998. 5 Zheng Y, Jiao Y, Jaroniec M, et al. Angewandte Chemie-International Edition, 2015, 54, 52. 6 Qian G, Chen J, Yu T, et al. Nano-micro Letters, 2021, 13(1), 77. 7 Huang X, Huang X, Wang Y E, et al. Inorganic Chemistry Communications, 2021, 134, 109023. 8 Dao D V, Le T D, Adilbish G, et al. Journal of Materials Chemistry A, 2019, 7(47), 26996. 9 Mikkelsen K, Cassidy B, Hofstetter N, et al. Chemistry of Materials, 2014, 26(24), 6928. 10 Yan H, Yao S, Liang W, et al. Journal of Catalysis, 2020, 381, 248. 11 Hu X, Zhu J, Li J, et al. ChemElectroChem, 2020, 7, 3211. 12 Wang Z, Hu Y, Liu W, et al. Chemistry-A European Journal, 2020, 26, 9382. 13 Wu Z, Guo X, Zhang Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 16577. 14 Sun X, Ding R. Catalysis Science and Technology, 2020, 10, 1567. 15 Wang K, Huang W, Cao Q, et al. Chemical Engineering Journal, 2022, 427, 130865. 16 You B, Liu X, Jiang N, et al. Journal of the American Chemical Society, 2016, 138, 13639. 17 Guo T, Xu X, Wang X, et al. Chemical Engineering Journal, 2021, 417, 128067. 18 Rob A, Linda S, Jan F, et al. Chemistry of Materials, 2009, 21(13), 2580. 19 Bétard A, Fischer R A. Chemical Reviews, 2012, 112(2), 1055. 20 Mueller U, Schubert M, Teich F, et al. Journal of Materials Chemistry, 2006, 16, 626. 21 Klinowski J, Paz F A A, Silva P, et al. Dalton Transactions, 2011, 40, 321. 22 Desai A V, Pimenta V, King C, et al. RSC Advances, 2020, 10(23), 13732. 23 Chen Y, Ni D, Yang X, et al. Electrochimica Acta, 2018, 278(10), 114. 24 Klimakow M, Klobes P, ThüNemann A, et al. Chemistry of Materials, 2010, 22(18), 5216. 25 Beamish-Cook J, Shankland K, Murray C A, et al. Crystal Growth & Design, 2021, 21(5), 3047. 26 Rambabu D, Bhattacharyya S, Singh T, et al. Inorganic Chemistry, 2020, 59(2), 1436. 27 Arnau C, Imaz I, Cano-Sarabia M, et al. Nature Chemistry, 2013, 5(3), 203. 28 Troyano J, Çamur C, Garzón-Tovar L, et al. Accounts of Chemical Research, 2020, 53(6), 1206. 29 Luis G T, Sabina R H, Inhar I, et al. Journal of the American Chemical Society, 2017, 139, 897. 30 Yang L, Cao L G, Huang R Y, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36290. 31 Li F, Shao Q, Huang X , et al. Angewandte Chemie-International Edition, 2018, 57, 1888. 32 Lu Z, Luo W, Huang X, et al. Journal of Colloid and Interface Science, 2022, 611, 599. 33 Lubna Y, Tayyaba N, Naseem I, et al. Renewable Energy, 2020, 156, 1040. 34 Chi X Y, Gao L L, Zhou W D, et al. Journal of Solid State Chemistry, 2022, 311, 123094. 35 Qin L, Zheng Q M, Liu J L. Materials Chemistry Frontiers, 2021, 21, 5. 36 Gao S, Jia X, Yang J, et al. Journal of Materials Chemistry A, 2012, 22, 21733. 37 Zhou H, Li X, Fan T, et al. Advanced Materials, 2010, 22, 951. 38 Deng Q W, Ren G Q, Li Y J, et al. Mater Today Energy, 2020, 18, 100506. 39 Xu K, Bao H, Tang C, et al. Mater Today Energy, 2020, 18, 100500. 40 Cao X, Tan C, Sindoro M, et al. Chemical Society Reviews, 2017, 46, 2660. 41 Wang L, Han Y, Feng X, et al. Coordination Chemistry Reviews, 2016, 307, 361. 42 Wang H, Zhu Q L, Zou R, et al. Chem, 2017, 2, 52. 43 Ibrahim A O, Adegoke K A, Adegoke R O, et al. Journal of Molecular Liquids, 2021, 333, 115593. 44 Adegoke K A, Agboola O S, Ogunmodede J, et al. Materials Chemistry and Physics, 2020, 253, 123246. 45 Zhu B, Zou R, Xu Q. Advanced Energy Materials, 2018, 8, 1. 46 Wang Z, Hou Z, Wang Y, et al. Journal of Applied Polymer Science, 2013, 127, 710. 47 Lan R, Tao S, Irvine J T S, et al. Energy & Environmental Science, 2010, 3, 438. 48 Liu M, Wang Y, Wu Y, et al. Journal of Cleaner Production, 2018, 187, 361. 49 Xu W, Wu Z, Tao S, et al. Energy Technology, 2016, 4, 1329. 50 Lambert D F, Sherwood J E, Francis P S, et al. Soil Research, 2004, 42, 709. 51 Rollinson A N, Jones J, Dupont V, et al. Energy & Environmental Science, 2011, 4, 1216. 52 Boggs B K, King R L, Botte G G, et al. Chemical Communications, 2009, 4859. 53 Wang D, Hui S, Liu C, et al. Fuel, 2016, 180(15), 34. 54 Wang L, Xie B, Gao N, et al. Environmental Science and Pollution Research, 2017, 24, 20401. 55 Bahmani M, Dashtian K, Mowla D, et al. Chemosphere, 2021, 267, 129206. 56 Gamboa-Aldeco M, Mrozek P, Rhee C K, et al. Surface Science, 1993, 297(3), 135. 57 Fels M, Med B. Engineering Computers, 1978, 16, 25. 58 Wang D, Botte G G. ECS Electrochemistry Letters, 2014, 3, 29. 59 Xu W, Zhang H, Li G, et al. Scientific Reports, 2014, 4, 5863. 60 Vedharathinam V, Botte G G. Electrochimica Acta, 2013, 108, 660. 61 Zhang L, Wang L, Lin H, et al. Angewandte Chemie-International Edition, 2019, 58, 16820. 62 Chen W, Xu L T, Zhu X R, et al. Angewandte Chemie-International Edition, 2020, 60(13), 7297. 63 Zhang K, Liu C, Graham N, et al. Nano Energy, 2021, 87, 106217. 64 Cheng Y, Xiao X, Guo X W, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(23), 8675. 65 Gopi S, Perumal S, Olayan E, et al. Chemosphere, 2021, 267, 129243. 66 Huang S H, Wu Y, Fu J, et al. Nanotechnology, 2021, 32, 385405. 67 Liu J L, Zhou X Y, An J L, et al. Energy Fuels, 2022, 36(17), 10346. 68 Dai Z X, Du X Q, Zhang X S, et al. International Journal of Hydrogen Energy, 2022, 5(39), 17252. 69 Xu H Z, Ye K, Zhu K, et al. Inorganic Chemistry Frontiers, 2020, 7(14), 2602. 70 Xu H Z, Ye K, Zhu K, et al. Inorganic Chemistry Frontiers, 2021, 8(11), 2788. 71 Liu X F, Zhang J H, Jin L J, et al. Inorganic Chemistry, DOI: 10. 1021/acs. inorgchem. 2c04465. 72 Wang L, Ren L T, Wang X R, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4750. 73 Tian J J, Cao C S, He Y C, et al. Green Energy & Environment, DOI: 10. 1016/j. gee. 2022. 05. 001. 74 Hu S N, Wang S Q, Feng C Q, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(19), 7414. 75 Chen C C, Jin L J, Hu L, et al. Journal of Colloid and Interface Science, 2022, 628(15), 1008. 76 Wei D D, Tang W J, Ma N N, et al. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2021, 874(1), 159945. 77 Sathish P S, Sungbo C. Advanced Sustainable Systems, 2022, 6(6), 2200038. 78 Selvam S P, Cho S. Advanced Sustainable Systems, 2022, 6, 2200. 79 Jeon Y, Lee J, Jo H, et al. Chemical Engineering Journal, 2021, 407, 126967. 80 Fang D, Wang Y, Qian C, et al. Advanced Functional Materials, 2019, 29, 19008. 81 GuoL T, Xu W J, Sun Z J, et al. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104118. 82 Zhao T, Dong D Z, Tian L, et al. Journal of Colloid and Interface Science, 2023, 634, 630. 83 Jiang X L, Yang Y Y, Zhou C, et al. International Journal of Hydrogen Energy, 2022, 78(47), 33308. 84 Xu H Z, Ke Y, Kai Z, et al. Dalton Transactions, 2020, 49, 5646. 85 Rezaee S, Shahrokhian S. Nanoscale, 2020, 12, 16123. 86 Liu T, Li P, Yao N, et al. Angewandte Chemie International Edition, 2019, 58, 4679. 87 Zhang J C, Song X D, Kang L K, et al. Chem Catalysis, 2022, 11(2), 3254. 88 Yuan M, Wang R, Sun Z, et al. Inorganic Chemistry, 2019, 58(17), 11449. 89 Wang H, Zou H, Liu Y, et al. Scientific Reports, 2021, 11(1), 21414. 90 Rollinson A N, Jones J, Dupont, et al. Energy & Environmental Sciences, 2011, 4, 1216. 91 Putri Y M T A, Chamberlain T W, Degirmentci V,et al. ACS Applied Energy Materials, 2023, 6, 2497. 92 Nhac D, Tien K, Bo H Y, et al. Journal of Nanoscience and Nanotech-nology, 2021, 21(3), 1890. 93 Ao X, Gu Y, Li C, et al. Applied Catalysis B: Environmental, 2022, 315(15), 121586. 94 Jiang H, Xia J, Jiao L, et al. Applied Catalysis B: Environmental, 2022, 310, 121352.