Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23020193-10    https://doi.org/10.11896/cldb.23020193
  电化学能源材料与器件 |
MOFs衍生物在尿素氧化中的研究进展
张霞1,2, 吴瑛1,*, 袁牧锋3, 王春栋2,*
1 塔里木大学化学化工学院,新疆 阿拉尔 843300
2 华中科技大学集成电路学院,武汉 430074
3 香港中文大学(深圳)理工学院,广东 深圳 518172
Recent Research Progress of MOFs Derivatives for Urea Oxidation
ZHANG Xia1,2, WU Ying1,*, YUEN Mufung3, WANG Chundong2,*
1 School of Chemistry and Chemical Engineering, Tarim University, Alar 843300, Xinjiang, China
2 School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
3 School of Science and Technology, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, Guangdong, China
下载:  全 文 ( PDF ) ( 22412KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 尿素氧化反应(UOR)在缓解现代氢能源制备和废水处理等压力中起着关键作用,引入性能优异的电催化剂有助于降低电化学能耗。金属-有机骨架(MOFs)衍生物因能克服MOFs原有导电性及稳定性差的固有缺陷备受关注,被认为是一种很有前途的电催化剂。本文回顾和总结了基于MOFs衍生物的设计和构建的相关研究:(i)基于镍基/非镍基的UOR的机理分析;(ii)概括了利用结构调控、形貌控制、界面工程和缺陷工程的手段提高电子电导率的策略,同时概括了材料物理特性改变与催化活性的相关性;(iii) MOFs衍生物基于UOR的应用研究。最后,对UOR的后期研究挑战和发展提出了合理的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张霞
吴瑛
袁牧锋
王春栋
关键词:  MOFs衍生物  尿素氧化反应  结构调控  形貌控制  界面工程  缺陷工程    
Abstract: Urea oxidation reaction (UOR) plays an essential role in reducing the strain of contemporary hydrogen energy production and wastewater treatment, and the development of electrocatalysts with superior performance can aid in lowering the amount of energy required. Derivatives of metal-organic frameworks (MOFs) materials have garnered a lot of attention for their potential as electrocatalysts, by addressing the inherent flaws of poor conductivity and stability. With reference to the design and construction of MOF-derivatives, we review and summarize some studies based on: (i) the reaction mechanism of nickel-based/non-nickel-based UOR; (ii) strategies to improve the electronic conductivity by means of structural modulation, morphology control, interfacial engineering, and defect engineering, outlining the change in physical properties of the materials with respect to the catalytic activity correlation;(iii) analyses of the applications of UOR-based MOFs derivatives. Finally, we give some perspectives on the most recent research challenges and developments in UOR.
Key words:  MOFs derivatives    urea oxidation reactions    structure modulation    morphology control    interface engineering    defect engineering
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TQ150  
基金资助: 新疆建设兵团南疆重点产业创新发展支撑计划项目(2020DB002;2022DB009);深圳市自然科学基金面上项目(JCYJ20190813172609404)
通讯作者:  *吴瑛,塔里木大学化学化工学院教授、硕士研究生导师。新疆师范大学化学系专业毕业,目前主要从事于光电催化等方面的研究工作。发表论文50余篇,包括Coordination Chemistry Reviews、Chinese Physics B等。
王春栋,华中科技大学集成电路学院/武汉光电国家研究中心的双聘教授、博士研究生导师。2013 年于香港城市大学获博士学位;2013年—2015年先后在中国香港城市大学、中国香港科技大学、比利时荷语鲁汶大学从事博士后工作。目前主要从事包括单原子催化、自旋催化及燃料电池等方面的研究工作。发表SCI论文160 余篇,包括J.Am.Chem.Soc.、Energy Environ.Sci.、Angew.Chem.Int.Ed.、Adv.Energy Mater.、ACS Nano等,主持国家重点研发计划(政府间国际合作重点专项)、国家自然科学基金(3项)等多项项目。   
作者简介:  张霞,塔里木大学化学化工学院硕士研究生,在吴瑛教授和王春栋教授的指导下进行研究。目前主要研究领域为尿素氧化反应中镍基MOFs及其衍生物的电催化剂设计。
引用本文:    
张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
ZHANG Xia, WU Ying, YUEN Mufung, WANG Chundong. Recent Research Progress of MOFs Derivatives for Urea Oxidation. Materials Reports, 2024, 38(6): 23020193-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23020193  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23020193
1 Li Y, Wei X, Chen L, et al. Angewandte Chemie-International Edition, 2021, 60, 19550.
2 Lu C, Tran C D, Zhang J, et al. ACS Nano, 2017, 11, 3933.
3 Holladay J D, Hu J, King D L, et al. Catalysis today, 2009, 139, 244.
4 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355, 4998.
5 Zheng Y, Jiao Y, Jaroniec M, et al. Angewandte Chemie-International Edition, 2015, 54, 52.
6 Qian G, Chen J, Yu T, et al. Nano-micro Letters, 2021, 13(1), 77.
7 Huang X, Huang X, Wang Y E, et al. Inorganic Chemistry Communications, 2021, 134, 109023.
8 Dao D V, Le T D, Adilbish G, et al. Journal of Materials Chemistry A, 2019, 7(47), 26996.
9 Mikkelsen K, Cassidy B, Hofstetter N, et al. Chemistry of Materials, 2014, 26(24), 6928.
10 Yan H, Yao S, Liang W, et al. Journal of Catalysis, 2020, 381, 248.
11 Hu X, Zhu J, Li J, et al. ChemElectroChem, 2020, 7, 3211.
12 Wang Z, Hu Y, Liu W, et al. Chemistry-A European Journal, 2020, 26, 9382.
13 Wu Z, Guo X, Zhang Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 16577.
14 Sun X, Ding R. Catalysis Science and Technology, 2020, 10, 1567.
15 Wang K, Huang W, Cao Q, et al. Chemical Engineering Journal, 2022, 427, 130865.
16 You B, Liu X, Jiang N, et al. Journal of the American Chemical Society, 2016, 138, 13639.
17 Guo T, Xu X, Wang X, et al. Chemical Engineering Journal, 2021, 417, 128067.
18 Rob A, Linda S, Jan F, et al. Chemistry of Materials, 2009, 21(13), 2580.
19 Bétard A, Fischer R A. Chemical Reviews, 2012, 112(2), 1055.
20 Mueller U, Schubert M, Teich F, et al. Journal of Materials Chemistry, 2006, 16, 626.
21 Klinowski J, Paz F A A, Silva P, et al. Dalton Transactions, 2011, 40, 321.
22 Desai A V, Pimenta V, King C, et al. RSC Advances, 2020, 10(23), 13732.
23 Chen Y, Ni D, Yang X, et al. Electrochimica Acta, 2018, 278(10), 114.
24 Klimakow M, Klobes P, ThüNemann A, et al. Chemistry of Materials, 2010, 22(18), 5216.
25 Beamish-Cook J, Shankland K, Murray C A, et al. Crystal Growth & Design, 2021, 21(5), 3047.
26 Rambabu D, Bhattacharyya S, Singh T, et al. Inorganic Chemistry, 2020, 59(2), 1436.
27 Arnau C, Imaz I, Cano-Sarabia M, et al. Nature Chemistry, 2013, 5(3), 203.
28 Troyano J, Çamur C, Garzón-Tovar L, et al. Accounts of Chemical Research, 2020, 53(6), 1206.
29 Luis G T, Sabina R H, Inhar I, et al. Journal of the American Chemical Society, 2017, 139, 897.
30 Yang L, Cao L G, Huang R Y, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36290.
31 Li F, Shao Q, Huang X , et al. Angewandte Chemie-International Edition, 2018, 57, 1888.
32 Lu Z, Luo W, Huang X, et al. Journal of Colloid and Interface Science, 2022, 611, 599.
33 Lubna Y, Tayyaba N, Naseem I, et al. Renewable Energy, 2020, 156, 1040.
34 Chi X Y, Gao L L, Zhou W D, et al. Journal of Solid State Chemistry, 2022, 311, 123094.
35 Qin L, Zheng Q M, Liu J L. Materials Chemistry Frontiers, 2021, 21, 5.
36 Gao S, Jia X, Yang J, et al. Journal of Materials Chemistry A, 2012, 22, 21733.
37 Zhou H, Li X, Fan T, et al. Advanced Materials, 2010, 22, 951.
38 Deng Q W, Ren G Q, Li Y J, et al. Mater Today Energy, 2020, 18, 100506.
39 Xu K, Bao H, Tang C, et al. Mater Today Energy, 2020, 18, 100500.
40 Cao X, Tan C, Sindoro M, et al. Chemical Society Reviews, 2017, 46, 2660.
41 Wang L, Han Y, Feng X, et al. Coordination Chemistry Reviews, 2016, 307, 361.
42 Wang H, Zhu Q L, Zou R, et al. Chem, 2017, 2, 52.
43 Ibrahim A O, Adegoke K A, Adegoke R O, et al. Journal of Molecular Liquids, 2021, 333, 115593.
44 Adegoke K A, Agboola O S, Ogunmodede J, et al. Materials Chemistry and Physics, 2020, 253, 123246.
45 Zhu B, Zou R, Xu Q. Advanced Energy Materials, 2018, 8, 1.
46 Wang Z, Hou Z, Wang Y, et al. Journal of Applied Polymer Science, 2013, 127, 710.
47 Lan R, Tao S, Irvine J T S, et al. Energy & Environmental Science, 2010, 3, 438.
48 Liu M, Wang Y, Wu Y, et al. Journal of Cleaner Production, 2018, 187, 361.
49 Xu W, Wu Z, Tao S, et al. Energy Technology, 2016, 4, 1329.
50 Lambert D F, Sherwood J E, Francis P S, et al. Soil Research, 2004, 42, 709.
51 Rollinson A N, Jones J, Dupont V, et al. Energy & Environmental Science, 2011, 4, 1216.
52 Boggs B K, King R L, Botte G G, et al. Chemical Communications, 2009, 4859.
53 Wang D, Hui S, Liu C, et al. Fuel, 2016, 180(15), 34.
54 Wang L, Xie B, Gao N, et al. Environmental Science and Pollution Research, 2017, 24, 20401.
55 Bahmani M, Dashtian K, Mowla D, et al. Chemosphere, 2021, 267, 129206.
56 Gamboa-Aldeco M, Mrozek P, Rhee C K, et al. Surface Science, 1993, 297(3), 135.
57 Fels M, Med B. Engineering Computers, 1978, 16, 25.
58 Wang D, Botte G G. ECS Electrochemistry Letters, 2014, 3, 29.
59 Xu W, Zhang H, Li G, et al. Scientific Reports, 2014, 4, 5863.
60 Vedharathinam V, Botte G G. Electrochimica Acta, 2013, 108, 660.
61 Zhang L, Wang L, Lin H, et al. Angewandte Chemie-International Edition, 2019, 58, 16820.
62 Chen W, Xu L T, Zhu X R, et al. Angewandte Chemie-International Edition, 2020, 60(13), 7297.
63 Zhang K, Liu C, Graham N, et al. Nano Energy, 2021, 87, 106217.
64 Cheng Y, Xiao X, Guo X W, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(23), 8675.
65 Gopi S, Perumal S, Olayan E, et al. Chemosphere, 2021, 267, 129243.
66 Huang S H, Wu Y, Fu J, et al. Nanotechnology, 2021, 32, 385405.
67 Liu J L, Zhou X Y, An J L, et al. Energy Fuels, 2022, 36(17), 10346.
68 Dai Z X, Du X Q, Zhang X S, et al. International Journal of Hydrogen Energy, 2022, 5(39), 17252.
69 Xu H Z, Ye K, Zhu K, et al. Inorganic Chemistry Frontiers, 2020, 7(14), 2602.
70 Xu H Z, Ye K, Zhu K, et al. Inorganic Chemistry Frontiers, 2021, 8(11), 2788.
71 Liu X F, Zhang J H, Jin L J, et al. Inorganic Chemistry, DOI: 10. 1021/acs. inorgchem. 2c04465.
72 Wang L, Ren L T, Wang X R, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4750.
73 Tian J J, Cao C S, He Y C, et al. Green Energy & Environment, DOI: 10. 1016/j. gee. 2022. 05. 001.
74 Hu S N, Wang S Q, Feng C Q, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(19), 7414.
75 Chen C C, Jin L J, Hu L, et al. Journal of Colloid and Interface Science, 2022, 628(15), 1008.
76 Wei D D, Tang W J, Ma N N, et al. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2021, 874(1), 159945.
77 Sathish P S, Sungbo C. Advanced Sustainable Systems, 2022, 6(6), 2200038.
78 Selvam S P, Cho S. Advanced Sustainable Systems, 2022, 6, 2200.
79 Jeon Y, Lee J, Jo H, et al. Chemical Engineering Journal, 2021, 407, 126967.
80 Fang D, Wang Y, Qian C, et al. Advanced Functional Materials, 2019, 29, 19008.
81 GuoL T, Xu W J, Sun Z J, et al. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104118.
82 Zhao T, Dong D Z, Tian L, et al. Journal of Colloid and Interface Science, 2023, 634, 630.
83 Jiang X L, Yang Y Y, Zhou C, et al. International Journal of Hydrogen Energy, 2022, 78(47), 33308.
84 Xu H Z, Ke Y, Kai Z, et al. Dalton Transactions, 2020, 49, 5646.
85 Rezaee S, Shahrokhian S. Nanoscale, 2020, 12, 16123.
86 Liu T, Li P, Yao N, et al. Angewandte Chemie International Edition, 2019, 58, 4679.
87 Zhang J C, Song X D, Kang L K, et al. Chem Catalysis, 2022, 11(2), 3254.
88 Yuan M, Wang R, Sun Z, et al. Inorganic Chemistry, 2019, 58(17), 11449.
89 Wang H, Zou H, Liu Y, et al. Scientific Reports, 2021, 11(1), 21414.
90 Rollinson A N, Jones J, Dupont, et al. Energy & Environmental Sciences, 2011, 4, 1216.
91 Putri Y M T A, Chamberlain T W, Degirmentci V,et al. ACS Applied Energy Materials, 2023, 6, 2497.
92 Nhac D, Tien K, Bo H Y, et al. Journal of Nanoscience and Nanotech-nology, 2021, 21(3), 1890.
93 Ao X, Gu Y, Li C, et al. Applied Catalysis B: Environmental, 2022, 315(15), 121586.
94 Jiang H, Xia J, Jiao L, et al. Applied Catalysis B: Environmental, 2022, 310, 121352.
[1] 张亚玲, 程国君, 唐忠锋, 万祥龙, 丁国新, 王周锋. PVA基复合材料导热性能的研究进展[J]. 材料导报, 2024, 38(16): 23060217-10.
[2] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[3] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[4] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[5] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[6] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[7] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[8] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[9] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[10] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[11] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[12] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[13] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[14] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[15] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed