Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22050194-7    https://doi.org/10.11896/cldb.22050194
  无机非金属及其复合材料 |
石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响
田浩正1,2, 乔宏霞1,2,3,*, 冯琼1,2,*, 韩文文1,2
1 兰州理工大学土木工程学院,兰州 730050
2 兰州理工大学甘肃省先进土木工程材料工程研究中心,兰州 730050
3 兰州理工大学西部土木工程防灾减灾教育部工程研究中心,兰州 730050
Effect of Stone Powder Substitution Rate on the Performance and Microstructure of Mechanism Sand Polymer-bonded Mortar
TIAN Haozheng1,2, QIAO Hongxia1,2,3,*, FENG Qiong1,2,*, HAN Wenwen1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Gansu Advanced Civil Engineering Materials Engineering Research Center, Lanzhou University of Technology, Lanzhou 730050, China
3 Western Ministry of Civil Engineering Disaster Prevention and Mitigation Engineering Research Center, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 27505KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究凝灰岩石粉在聚合物粘结砂浆中应用的可行性,分析了石粉部分替代水泥对聚合物粘结砂浆工作性能及力学性能的影响规律,并采用压汞法(MIP)、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)试验研究砂浆内部孔结构及水化产物微观形貌的变化规律。结果表明:凝灰岩石粉在聚合物粘结砂浆中具有较好的适用性;砂浆强度随石粉替代率的增加呈先增大后减小的趋势,在替代率为15%(质量分数,下同)时,砂浆7 d、28 d抗折强度、抗压强度和粘结强度达到最大值,此时工作性能也较优。当石粉替代率不大于15%时,其对粘结砂浆微细观结构的影响以填充效应和晶核效应为主,可有效改善砂浆内部密实度,且有利于内部孔结构向少害孔和无害孔发展;当石粉替代率为15%时,H2O、OH-、CO32-等特征振动峰强度最高,即此时内部水化最为充分;当石粉替代率超过15%时,石粉对粘结砂浆工作性能、力学性能和微细观结构均产生不利的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田浩正
乔宏霞
冯琼
韩文文
关键词:  聚合物粘结砂浆  凝灰岩石粉  力学性能  孔结构  微观形貌    
Abstract: In order to study the feasibility of the application of tuff stone powder in polymer-bonded mortar, the influence of stone powder substitution rate on the working performance and mechanical properties of polymer-bonded mortar was analyzed. The mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR) were used to study the internal pore structure of mortar and the microstructure of hydration products. The results show that: tuff stone powder has good applicability in polymer-bonded mortar; the strength of mortar increases first and then decreases with the increase of stone powder substitution rate, and the flexural strength, compressive strength and bond strength reach the maximum at 7 d and 28 d when the stone powder substitution rate is 15%, and the working performance is also better at this time; when the substitution rate is not more than 15%, its effect on the microstructure of mortar is mainly filling effect and nuc-leation effect, which can effectively improve the internal compactness of mortar, and is conducive to the development of internal pore structure to less harmful pores and harmless pores; when the substitution rate is 15%, the characteristic vibration peak intensity of H2O, OH-, CO32-, etc. is the highest, i.e. the internal hydration is the most adequate at this time; when the substitution rate of stone powder exceeds 15%, stone powder has adverse effects on the working performance, mechanical properties and microstructure of bonded mortar.
Key words:  polymer-bonded mortar    tuff stone powder    mechanical property    hole structure    microscopic appearance
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TU521.2+5  
基金资助: 国家自然科学基金(52008196;U21A20150;52178216)
通讯作者:  *乔宏霞,工学博士,兰州理工大学九三学社支社副主委,教授、博士研究生导师。国际材料与试验RILEM委员,AEIC专家库成员,国家科技部核心库专家,教育部学位中心学位论文评审专家,国家自然科学基金项目同行评议专家,入选九三学社中央组织的“院士导师计划”中合作博士生导师,中共中央组织部2019年甘肃省“西部之光”访问学者入选者,中国硅酸盐学会混凝土与水泥制品分会“混凝土青年论坛(常设)”学术委员会委员。承担国家自然科学基金、中国博士后科学基金等科研项目20余项,近年来发表学术论文130余篇,获得的荣誉有中国科学院王宽诚博士后工作奖励、兰州理工大学“十一五”科技工作先进个人、西部土木工程防灾减灾优秀青年人才工程奖等。主要研究领域有西部盐渍土和盐湖地区混凝土及镁水泥钢筋混凝土耐久性、机制骨料及其混凝土、纤维及纳米混凝土、新型墙体材料等。
冯琼,工学博士,副教授、硕士研究生导师。2007年西安建筑科技大学材料科学与工程专业本科毕业,2010年西安建筑科技大学材料学专业硕士毕业后到兰州理工大学工作至今,2019年兰州理工大学土木工程材料专业博士毕业。主要研究领域包括特殊环境下混凝土材料耐久性、工业废弃物资源化利用、机制砂特种砂浆制备与性能。近几年在国内外重要期刊发表论文20余篇。   
作者简介:  田浩正,2020年6月于山东交通学院获得工学学士学位。现为兰州理工大学土木工程学院硕士研究生,在乔宏霞教授和冯琼副教授的指导下进行研究。目前主要研究领域为机制砂特种砂浆及混凝土耐久性。
引用本文:    
田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
TIAN Haozheng, QIAO Hongxia, FENG Qiong, HAN Wenwen. Effect of Stone Powder Substitution Rate on the Performance and Microstructure of Mechanism Sand Polymer-bonded Mortar. Materials Reports, 2024, 38(6): 22050194-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050194  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22050194
1 Wang P M, Zhang G F. In: Proceedings of the 2010 4th (China) International Symposium on Production and Application Technology of Dry-Mixed Mortar for Construction. Beijing, China, 2010, pp. 15 (in Chinese).
王培铭, 张国防. 2010第四届(中国)国际建筑干混砂浆生产应用技术研讨会. 北京, 2010, pp. 15.
2 Wang J J, Lang Y. Development Guide to Building Materials, 2018, 16(8), 3(in Chinese).
王洁军, 郎营. 建材发展导向, 2018, 16(8), 3.
3 Li X G. Journal of Building Materials, 2004(1), 66(in Chinese).
李兴贵. 建筑材料学报, 2004(1), 66.
4 Li H J, Huang F L, Chen G Z, et al. Construction and Building Materials, 2016, 109, 41.
5 Shen W G, Liu Y, Wang Z W, et al. Construction and Building Mate-rials, 2018, 172, 574.
6 Liu T. Experimental study on the effect of characteristics of mechanism sand on the performance of cement-based materials. Master's Thesis, Lanzhou Jiaotong University, China, 2021(in Chinese).
刘通. 机制砂特性对水泥基材料性能影响的试验研究. 硕士学位论文, 兰州交通大学, 2021.
7 Yu B T, Liu T, Wang H, et al. Materials Reports, 2021, 35(14), 14058(in Chinese).
于本田, 刘通, 王焕, 等. 材料导报, 2021, 35(14), 14058.
8 Wang D H, Shi C J, Farzadnia N, et al. Construction and Building Materials, 2018, 181, 659.
9 Cortes D D, Kim H K, Palomino A M, et al. Cement and Concrete Research, 2008, 38, 1142.
10 Chen J L, Zhou W J, Niu W, et al. Construction Technology, 2012, 43(7), 591(in Chinese).
陈家珑, 周文娟, 牛威, 等. 建筑技术, 2012, 43(7), 591.
11 Cai J W, Li B X, Zhou M K, et al. Journal of Wuhan University of Technology, 2006(4), 27(in Chinese).
蔡基伟, 李北星, 周明凯, 等. 武汉理工大学学报, 2006(4), 27.
12 Cai J W. Study on the effect of stone powder on the performance of machine-made sand concrete and its mechanism. Ph. D. Thesis, Wuhan University of Technology, China, 2006(in Chinese).
蔡基伟. 石粉对机制砂混凝土性能的影响及机理研究. 博士学位论文, 武汉理工大学, 2006.
13 Cortes D D, Kim H K, Palomino A M, et al. Cement and Concrete Research, 2008, 38(10), 1142.
14 Qiao H X, Liang J K, Li Y K, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 431(in Chinese).
乔宏霞, 梁金科, 李元可, 等. 硅酸盐通报, 2019, 38(2), 431.
15 Christetuscn B J, Mason T O, Jennings H M. Cement and Concrete Research, 1996, 26(9), 1325.
16 Yu B T, Liu T, Wang H, et al. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5), 1052(in Chinese).
于本田, 刘通, 王焕, 等. 吉林大学学报(工学版), 2022, 52(5), 1052.
17 Wu Z W, Lian H Z. High performance concrete, China Railway Publis-hing House, China, 1999, pp. 42(in Chinese).
吴中伟, 廉惠珍. 高性能混凝土, 中国铁道出版社, 1999, pp. 42.
18 Zhang L H, Liu L B, Zhou Y S, et al. China Concrete and Cement Pro-duct, 2011(12), 22(in Chinese).
张礼华, 刘来宝, 周永生, 等. 混凝土与水泥制品, 2011(12), 22.
19 Wu Q, Zhu Y J, Xu Y, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(3), 112(in Chinese).
吴庆, 朱袁洁, 许耀, 等. 江苏科技大学学报(自然科学版), 2020, 34(3), 112.
20 Zhang L Q, Chen Q, Huang X, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(7), 2154(in Chinese).
张凌强, 陈倩, 黄兴, 等. 硅酸盐通报, 2020, 39(7), 2154.
21 Su L. Study on the performance of cellulose ether modified cement paste. Master's Thesis, Wuhan University of Technology, China, 2011(in Chinese).
苏雷. 纤维素醚改性水泥浆体性能研究. 硕士学位论文, 武汉理工大学, 2011.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[9] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed