Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110241-5    https://doi.org/10.11896/cldb.22110241
  无机非金属及其复合材料 |
基于拉曼光谱的含铜自抛光防污涂料的性能研究
朱永强1, 冯孟1, 赵亓新1, 王寒冰1, 杨玉龙1, 齐建涛1,*, 丛巍巍2
1 中国石油大学(华东)新能源学院,山东 青岛 266580
2 海洋化工研究院有限公司海洋涂料国家重点实验室,山东 青岛 266071
Research on Performance of Self-polishing Antifouling Coatings Containing Cu Based on Raman Spectroscopy
ZHU Yongqiang1, FENG Meng1, ZHAO Qixin1, WANG Hanbing1, YANG Yulong1, QI Jiantao1,*, CONG Weiwei2
1 College of New Energy, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co., Ltd., Qingdao 266071, Shandong, China
下载:  全 文 ( PDF ) ( 5325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海洋生物污损现象常常发生于涉海材料及海事设备的表面,造成了严重的经济损失及安全隐患。防污涂料可通过缓慢的毒剂释放来达到缓解海洋污损生物的目的,是极为经济高效的措施之一。其中防污剂是防污涂料功能实现的主体组分。然而,有关含铜自抛光防污涂料(Cu2O-SPC)中防污剂氧化亚铜(Cu2O)的检测及在服役过程中的成分变化研究较少。鉴于此,本工作探究了Cu2O-SPC表面特征及防污剂Cu2O在服役过程中的成分变化。扫描电子显微镜(SEM)、能谱仪(EDS)结果表明,Cu2O-SPC表面存在明显的颗粒相和非颗粒相,其中颗粒相存在大量的Cu、C、O元素,非颗粒相存在Cu、C、O、Fe、S、Si等元素。拉曼(Raman)光谱结果表明,选定Cu2O-SPC中Cu2O的追踪拉曼特征峰为409 cm-1,抛光磨蚀前后Cu2O-SPC的特征峰值发生了变化;对Cu2O-SPC部分区域进行原位分析发现Cu2O特征峰强度及峰面积降低并且波动减小。这表明抛光磨蚀前后Cu2O-SPC中Cu2O浓度发生了变化,且对Cu2O进行追踪发现,防污涂料服役过程中Cu2O向外界进行了缓慢扩散,并且于防污涂料内部在浓度差的驱动下由高浓度向低浓度进行了扩散。本工作有助于明确海洋装备用防污涂料表面形貌及成分、防污剂浓度转变,为防污涂料关键化学组分追踪和量化分析提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱永强
冯孟
赵亓新
王寒冰
杨玉龙
齐建涛
丛巍巍
关键词:  防污涂料  防污剂  微观形貌  成分变化    
Abstract: Fouling of marine organisms often occurs on the surface of marine materials and equipment, causing serious economic losses and security risks. Antifouling coatings are one of the most economical and efficient measures to relieve marine fouling organisms through slow release of toxic agents. Antifouling agent is the main component of antifouling coating. However, there are few studies on the detection of cuprous oxide (Cu2O) and its composition change in the process of service in Cu2O-SPC. In view of this, the surface characteristics of Cu2O-SPC and the composition changes of antifouling agent Cu2O in service were studied in this work. The results of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show that there are obvious granular phase and non-granular phase on the surface of Cu2O-SPC, in which there are a large number of Cu, C, O elements in the granular phase and Cu, C, O, Fe, S, Si elements in the non-granular phase. The Raman spectra shows that the tracking Raman characteristic peak of Cu2O in Cu2O-SPC is selected as 409 cm-1, and the characteristic peak of Cu2O-SPC changes before and after corrosion. In situ analysis of some areas of Cu2O-SPC show that the characteristic peak intensity and peak area of Cu2O decrease and the fluctuation decrease. That is, the Cu2O concentration of Cu2O-SPC has changed before and after corrosion. During the service of antifouling coatings, Cu2O slowly diffuses to the outside environment, and it diffuses from high concentration to low concentration driven by the concentration difference inside the antifouling coatings. This work is helpful to clarify the surface morphology and composition of antifouling coatings used in marine equipment and the transformation of antifouling agent concentration. It provides a new method to trace and quantify the key chemical components of antifouling coatings.
Key words:  antifouling coating    antifouling agent    micro-morphology    composition change
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TQ630.1  
基金资助: NSFC-山东联合基金(U2006219);国防基础科研计划项目(JCKY2021513B001);海洋涂料国家重点实验室开放课题;中国石油大学(华东)大学生创新训练项目(202207057);山东省大学生科研项目(22SSR052;22SSR048)
通讯作者:  * 齐建涛,中国石油大学(华东)新能源学院副教授、硕士研究生导师。主要从事金属材料的表面改性、纳米材料光谱分析及耐蚀性能评估等方面的研究工作。近年来,在腐蚀与防护研究领域发表论文30余篇,包括Corro. Sci. 、Mater. Let.、Electrochem. Commun.、Electrochim. Acta、J. Electrochem. Soc.、Appl. Surf. Sci.、Thin Solid Film和 Surf. Coat. Technol. 等被SCI收录的学术期刊。jiantao.qi@upc.edu.cn   
作者简介:  朱永强,2022年毕业于中国石油大学(华东),获得工学学士学位。现为中国石油大学(华东)新能源学院硕士研究生,在齐建涛副教授的指导下进行研究。主要研究领域为金属腐蚀与防护。
引用本文:    
朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
ZHU Yongqiang, FENG Meng, ZHAO Qixin, WANG Hanbing, YANG Yulong, QI Jiantao, CONG Weiwei. Research on Performance of Self-polishing Antifouling Coatings Containing Cu Based on Raman Spectroscopy. Materials Reports, 2024, 38(9): 22110241-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110241  或          https://www.mater-rep.com/CN/Y2024/V38/I9/22110241
1 Legonkova O A, Selitskaya O V. Eurasian Soil Science, 2009, 42(1), 62.
2 Gu J D. International Biodeterioration & Biodegradation, 2003, 52(2), 69.
3 Schultz M P. Biofouling, 2007, 23(5-6), 331.
4 Champ M A. Science of the Total Environment, 2000, 258(1-2), 21.
5 Abbott A, Abel P D, Arnold D W, et al. Science of the Total Environment, 2000, 258(1-2), 5.
6 Guo H,Zhai Y C, Xin J, et al. Journal of Materials and Metallurgy, 2006(2), 157 (in Chinese).
郭虹, 翟玉春, 辛喆, 等. 材料与冶金学报, 2006(2), 157.
7 Ho J Y, Huang M H. The Journal of Physical Chemistry, 2009, 113(32), 14159.
8 Zhang J T, Liu J F, Peng Q, et al. Chemistry of Materials, 2006, 18(4), 867.
9 Zieba-Palus J, Michalska A, Weselucha-Birczynska A, et al. Journal of Molecular Structure, 2011, 993, 134.
10 Yong H E, Krishnamoorthy K, Hyun K T, et al. Journal of Industrial and Engineering Chemistry, 2015, 29, 39.
11 Kiosidou E D, Karantonis A, Pantelis D I, et al. Journal of Coatings Technology and Research, 2017, 14(6), 1381.
12 Ackermann S, Steimecke M, Morig C, et al. Journal of Electroanalytical Chemistry, 2017, 795, 68.
13 Zhang D F, Zhang H, Guo L. Journal of Materials Chemistry, 2009, 19(29), 5220.
14 Xu H L, Wang W Z. Angewandte Chemie-International Edition, 2007, 46(9), 1489.
15 Luo Y S, Li S Q, Ren Q F, et al. Crystal Growth & Design, 2007, 7(1), 87.
16 McShane C M, Choi K S. Journal of the American Chemical Society, 2009, 131(7), 2561.
17 Xu J, Tang Y B, Zhang W X, et al. Crystal Growth & Design, 2009, 9(10), 4524.
18 Sun D, Yin P G, Guo L. Acta Physico-Chimica Sinica, 2011, 27(6), 1543 (in Chinese).
孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27(6), 1543.
19 Balkanski M, Nusimovici M A, Reydellet J. Solid State Communications, 1969, 7(11), 815.
20 Solache-Carranco H, Juarez-Diaz G, Martinez-Juarez J, et al. Revista Mexicana de Fisica, 2009, 55(5), 393.
21 Cleveland D, Carlson M, Hudspeth E D, et al. Spectroscopy Letters, 2007, 40(6), 903.
22 Liu W H, Yang W, Wu X Q, et al. Chinese Journal of Analytical Chemistry, 2007, 35(3), 416.
[1] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[2] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[3] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[4] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[5] 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
[6] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[7] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[8] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[9] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[10] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[11] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[12] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[13] 王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
[14] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[15] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed