Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22050144-7    https://doi.org/10.11896/cldb.22050144
  高分子与聚合物基复合材料 |
金属橡胶-聚氨酯复合材料减振性能研究
郑孝源1, 任志英1,*, 吴乙万1, 白鸿柏1, 黄健萌1, 谭桂斌2
1 福州大学机械工程及自动化学院,金属橡胶与振动噪声研究所,福州 350116
2 广东工业大学机电工程学院,广州 510006
Research on Vibration Damping Properties of Entangled Metallic Wire Materials- Polyurethane Composites
ZHENG Xiaoyuan1, REN Zhiying1,*, WU Yiwang1, BAI Hongbai1, HUANG Jianmeng1, TAN Guibin2
1 Metal Rubber Engineering Research Center, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2 School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 21544KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对单一减振材料无法兼具高阻尼与高刚度的弊端,本工作提出了一种新的复合材料,即将三维空间网状结构的金属橡胶(EMWM)作为基体,聚氨酯 (PU) 作为增强体,并采用真空渗流的方式制备了具有高阻尼与高刚度的金属橡胶-聚氨酯 (EMWM-PU) 复合材料。通过EMWM与EMWM-PU复合材料的准静态压缩试验,发现界面摩擦的引入使得EMWM-PU复合材料的耗能与刚度特性得到显著提升。此外搭建了复合材料管路减振测试平台,以平均振动加速度级和插入损失作为评价指标,研究了EMWM密度、激振量级、安装时的预紧间距对管路减振性能的影响。结果表明,EMWM-PU复合材料在5~1 000 Hz频段范围内均具有优异的减振效果,且复合材料中基体材料EMEM的密度越小、安装时的预紧间距越大,减振效果越好。本研究有效拓宽了复合材料的应用范围,也为金属橡胶复合材料的设计和应用提供了有效的指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑孝源
任志英
吴乙万
白鸿柏
黄健萌
谭桂斌
关键词:  金属橡胶  聚氨酯  复合材料  力学性能  管路减振    
Abstract: In the present work, a novel entangled metallic wire material-polyurethane(EMWM-PU) composite was developed through the vacuum infiltration method with the entangled metallic wire material (EMWM) as the matrix and polyurethane as the reinforcement. By comparing the quasistatic compression properties of EMWM and EMWM-PU composites, it was found that the composites exhibited excellent energy consumption and stiffness properties due to the interfacial friction. The pipeline test platform was built, and the vibration acceleration level and insertion loss were used as evaluation indexes. In addition, the effects of EMWM density, excitation levels and preload on the vibration damping performance of the pipeline were studied in detail. The results showed that the EMWM-PU composites have excellent vibration reduction effect in the frequency band of 5—1 000 Hz, and the smaller of the matrix density and the larger the preload during installation, the better the vibration reduction effect. This study provides effective guidance for the design and application of EMWM composites.
Key words:  entangled metallic wire material    polyurethane    composite    mechanical property    pipeline damping
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  O328  
  TB535+.1  
基金资助: 国家自然科学基金(U2330202;52175162;51805086);福建省关键技术创新及产业化项目(2023XQ005);江门市揭榜挂帅科技计划项目(2023780200030009506)
通讯作者:  *任志英,福州大学机械工程及自动化学院教授、博士研究生导师。2006年福州大学工作至今。目前主要从事装备减振降噪与金属橡胶材料研制方面的研究工作。发表论文60余篇,包括Composite Structures、Friction、AICHE J、Mechanical Systems and Signal Processing、Defence Technology 等。   
作者简介:  郑孝源,2021年6月于获得福州大学硕士学位。现为福州大学机械工程及自动化学院博士研究生,在任志英教授的指导下进行研究。目前主要研究领域为金属橡胶材料。
引用本文:    
郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
ZHENG Xiaoyuan, REN Zhiying, WU Yiwang, BAI Hongbai, HUANG Jianmeng, TAN Guibin. Research on Vibration Damping Properties of Entangled Metallic Wire Materials- Polyurethane Composites. Materials Reports, 2024, 38(6): 22050144-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050144  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22050144
1 Cao X F, Yu D L, Liu J W, et al. Journal of Vibration and Shock, 2016, 35(19), 20 (in Chinese).
曹晓丰, 郁殿龙, 刘江伟, 等. 振动与冲击, 2016, 35(19), 20.
2 Miao A N. Mechanical properties and vibration reduction research of multi-dimensional vibration and mitigation device for large-scale pipeline structures. Master's Thesis, Southeast University, China, 2018 (in Chinese).
苗安男. 大型管道结构多维隔减振装置力学性能及其减振研究. 硕士学位论文, 东南大学, 2018.
3 Yu M S, Lin L. Journal of Ship Mechanics, 2017, 21(2), 244 (in Chinese).
俞孟萨, 林立. 船舶力学, 2017, 21(2), 244.
4 Chiba T, Kobayashi H. Journal of Pressure Vessel Technology Transactions of the Asme, 1990, 112(1), 34.
5 Fang J, Lyons G J. Journal of Sound and Vibration, 1996, 193(4), 891.
6 Bi K M, Hao H. Engineering Structures, 2016, 123(15), 1.
7 Yin Z Y, Wu J H, Sun L H, et al. Journal of Ship Mechanics, 2018, 22(8), 1039 (in Chinese).
尹志勇, 吴江海, 孙凌寒, 等. 船舶力学, 2018, 22(8), 1039.
8 Lin F, Zhou Q D, Lyu X J. Ship Science and Technology, 2017, 39(2), 70 (in Chinese).
刘帆, 周其斗, 吕晓军. 舰船科学技术, 2017, 39(2), 70.
9 Li H Y. Study on the viscoelastic materials and dynamic properties of partial constrained layer damping structure. Master's Thesis, Qingdao University of Technology, China, 2018 (in Chinese).
李华阳. 粘弹性阻尼材料及局部约束阻尼结构动态力学性能研究. 硕士学位论文, 青岛理工大学, 2018.
10 Zhao C. Study on design and mechanical properties of metal rubber pipeline shock absorber. Master's Thesis, Harbin Engineering University, China, 2018 (in Chinese).
赵冲. 金属橡胶管路减振器设计与力学性能研究. 硕士学位论文, 哈尔滨工程大学, 2018.
11 Yang Y, Ren Z, Zhao S Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 157.
12 Bezborodov S A, Ulanov A M. Procedia Engineering, 2017, 176(2), 169.
13 Sun J, Wang H, Peng H X, et al. Journal of Materials Science and Engineering, 2019, 37(4), 664 (in Chinese).
孙杰, 王欢, 彭华新, 等. 材料科学与工程学报, 2019, 37(4), 664.
14 Jin M, Liu T W, Wang H Y, et al. Composites Part B, 2021, 207(2), 108563.
15 Zheng X Y, Ren Z Y, Shen L L, et al. Materials, 2021, 14(1), 187.
16 Xuan P. Experimental study on the damping mechanism and mechanical properties of high- performance aluminum form. Master's Thesis, Sout-heast University, China, 2016 (in Chinese).
轩鹏. 高性能泡沫铝减振机理及力学性能试验研究. 硕士学位论文, 东南大学, 2016.
17 Zheng X Y, Ren Z Y, Bai H B, et al. Defence Technology, DOI:10. 1016/j. dt. 2022. 03. 007.
18 Xiao K, Bai H B, Xue X, et al. Shock & Vibration, 2018, 11, 3974381.
19 Ding Z Y, Bai H B, Wu Y W, et al. Shock and Vibration, 2019, 2019, 1.
20 Zhang D Y, Scarpa F, Ma Y H, et al. Materials Science & Engineering A, 2013, 580(13), 305.
21 Zhang D Y, Scarpa F, Ma Y H, et al. Materials & Design, 2014, 56(1), 69.
22 Xu Y S, Xu Z D, Ge T, et al. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5), 1059 (in Chinese).
徐业守, 徐赵东, 葛腾, 等. 力学学报, 2017, 49(5), 1059.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[8] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[9] 路正楠, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用[J]. 材料导报, 2025, 39(1): 23110275-7.
[10] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[13] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[14] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[15] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed