Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080151-6    https://doi.org/10.11896/cldb.23080151
  金属与金属基复合材料 |
焊丝成分对国产Invar合金GTAW接头组织差异性的影响
程立宏1, 周裕琦1, 王建峰1, 李柱2, 穆战2, 占小红1,*
1 南京航空航天大学材料科学与技术学院,南京 211106
2 西安钢研功能材料股份有限公司,西安 710000
Effect of Welding Wire Composition on Microstructure Inhomogeneity of Domestic Invar Alloy GTAW Joint
CHENG Lihong1, ZHOU Yuqi1, WANG Jianfeng1, LI Zhu2, MU Zhan2, ZHAN Xiaohong1,*
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Xi'an Gangyan Special Alloy Co., Ltd., Xi'an 710000, China
下载:  全 文 ( PDF ) ( 29479KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用钨极惰性气体保护焊(Gas tungsten arc welding,GTAW)工艺完成15 mm厚国产Invar合金的焊接,研究了焊丝成分对接头组织差异性的影响。结果表明:三种焊丝所获得的显微组织均由焊缝边缘垂直于熔合线生长的粗大柱状晶和焊缝中部的等轴晶组成,等轴晶内部的亚晶结构明显细化。使用不同成分焊丝后在焊缝形成的析出相种类、形态与分布位置存在较大差别。采用添加0.40%Ti的焊丝在晶界析出较多规则的块状颗粒,而添加1.42%Nb的焊丝在亚晶界析出白色链状或柱状连续相。析出相不仅能作为异质形核的核心或钉扎晶界的质点细化晶粒,还可以作为沉淀相阻碍位错运动从而提高焊缝强度。试样拉伸结果表明:焊丝加入0.40%Ti、1.42%Nb后,接头的抗拉强度大幅提升,分别达到638.2 MPa和653.5 MPa,相较原始焊丝分别提高60.6%、64.4%。断口形貌表明采用含铌焊丝(1.42%Nb)后断口韧窝尺寸和深度增大,接头断裂模式由脆性断裂转变为韧性断裂,说明Nb元素对Invar合金接头组织细化、力学性能改善具有显著作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程立宏
周裕琦
王建峰
李柱
穆战
占小红
关键词:  国产Invar合金  焊丝成分  显微组织  力学性能  断口形貌    
Abstract: The influence of wire composition on the microstructure varieties of joints was studied by using gas tungsten arc welding (GTAW) process. Results showed that the microstructure of welded joint obtained by using the three welding wires are featured coarse columnar crystals grown perpendicular to the fusion lines and equiaxed crystals in the middle of weld, cellular subcrystals in equiaxed crystals are remarkably refined.There was a large differences in the type, morphology and distribution position of precipitated phases formed when using welding wires of different composition.When using the welding wire with 0.40%Ti, more regular bulk particles were precipitated at the grain boundary, and if useing the welding wire with 1.42%Nb, a white chain or columnar continuous phase were precipitated at the subgrain boundary, which not only enabled the core of heterogeneous nucleation or the particle that nails the grain boundary to refine the grain, but also hindered dislocation motion to strengthen the welded joint.The tensile test results showed that the tensile strength of the joints with 0.40%Ti addtion or 1.42%Nb addtion to the welding wire reached 638.2MPa or 653.5 MPa respectively, which are 60.6% and 64.4% higher than that of conventional welding wire.When the specimen was welded with the welding wire that with Nb (1.42%Nb) addition, the size depth of the fracture ligament increased, and the joint fracture mode changed from brittle fracture to ductile fracture, indicating that Nb plays a significant role in the microstructure refinement and mechanical properties improvement of Invar alloy joints.
Key words:  domestic Invar alloy    wire composition    microstructure    mechanical properties    fracture morphology
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG422.3  
基金资助: 中央高校基本科研业务费专项资金(NF2022003)
通讯作者:  * 占小红,南京航空航天大学材料科学与技术学院教授、博士研究生导师。2008年哈尔滨工业大学焊接专业博士毕业,2008年7月加入南京航空航天大学工作至今。目前主要从事轻合金激光焊接相关方向的工艺、建模仿真、装备等领域的研究工作。发表SCI 论文140余篇,申请专利90余项。其中,在Materials & Design、Journal of Materials Processing Technology、Journal of Crystal Growth、Science and Technology of Welding and Joining、Mate-rials Science and Engineering A等期刊发表论文多篇。xiaohongzhan_nuaa@126.com   
作者简介:  程立宏,2022年6月毕业于南京航空航天大学,并获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在占小红教授的指导下进行研究。目前主要研究领域为轻合金激光焊接与数值模拟。
引用本文:    
程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
CHENG Lihong, ZHOU Yuqi, WANG Jianfeng, LI Zhu, MU Zhan, ZHAN Xiaohong. Effect of Welding Wire Composition on Microstructure Inhomogeneity of Domestic Invar Alloy GTAW Joint. Materials Reports, 2024, 38(23): 23080151-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080151  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080151
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
2 Sun Z Q, Wu A R. Materials Reports, 2015, 29(11), 61 (in Chinese).
孙振起, 吴安如. 材料导报, 2015, 29(11), 61.
3 Fang Y W, Wang X F, Sun C, et al. Composites Science and Engineering, 2014, 2, 69 (in Chinese).
方宜武, 王显峰, 孙成, 等. 玻璃钢/复合材料, 2014, 2, 69.
4 Wang Y H, Chen J, Zhan X H, et al. Aeronautical Manufacturing Technology, 2014(11), 93.
王玉华, 陈洁, 占小红, 等. 航空制造技术, 2014, (11), 93.
5 Yao H L, Zhu M L, Tan S Y. Science & Technology Review, 2023, 41(6), 21 (in Chinese).
姚海琳, 朱美玲, 谭舒耀. 科技导报, 2023, 41(6), 21.
6 Chen J, Zhan X H, Chen J C, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(5), 1010 (in Chinese).
陈洁, 占小红, 陈纪城, 等. 中国有色金属学报, 2016, 26(5), 1010.
7 Zhao Y, Wu A P, Yutaka S, et al. Transactions of the China Welding Institution, 2011, 32(12), 89 (in Chinese).
赵玥, 吴爱萍, Yutaka S, 等. 焊接学报, 2011, 32(12), 89.
8 Zhan X H, Zhang D, Wei Y H, et al. Optics & Laser Technology, 2017, 97, 124.
9 Wang X J, Chai T X, Zhao Q S, et al. Transactions of the China Welding Institution, 2014, 35(4), 19 (in Chinese).
王希靖, 柴廷玺, 赵青山, 等. 焊接学报, 2014, 35(4), 19.
10 Zhao M J, Guo Z F, Chen S H, et al. Journal of Materials Science & Technology, 2014, 30(11), 1155.
11 Zhan X H, Liu X B, Wei Y H, et al. Journal of Materials Processing Technology. 2017, 244, 97.
12 Zhang C, Yu S F, Shu R T, et al. Modern Manufacturing Engineering, 2022(5), 79 (in Chinese).
张超, 余圣甫, 束润涛, 等. 现代制造工程, 2022(5), 79.
13 Zhao J Y, Wang J Y, Kang X F, et al. Optics and Laser Technology, 2023, 158, 108831.
14 Jiao G H, Fang X W, Chen X M, et al. Journal of Materials Processing Technology, 2023, 317, 117994.
15 Chen X L, Li W S, Lou M, et al. Journal of Materials Engineering, 2022, 50(9), 32 (in Chinese).
陈小龙, 李文生, 娄明, 等. 材料工程, 2022, 50(9), 32.
16 Ren H, Liu F C, Lin X, et al. Rare Metal Materials and Engineering, 2019, 48(10), 3289 (in Chinese).
任航, 刘奋成, 林鑫, 等. 稀有金属材料与工程, 2019, 48(10), 3289.
17 Wang S Y, Liu S W, Hou X Y, et al. Transactions of the China Welding Institution, 2023, 44(3), 31 (in Chinese).
王诗洋, 刘士伟, 侯星宇, 等. 焊接学报, 2023, 44(3), 31.
18 Meng S H, Li L Q, Si C J, et al. Crystals, 2022, 12, 977.
19 Gao Y, Yu Z H, Yan Y W, et al. Journal of Materials Engineering, 2023, 51(2), 91 (in Chinese).
高炜, 余竹焕, 阎亚雯, 等. 材料工程, 2023, 51(2), 91.
20 Chen D, Liu T, Zhao Y Q, et al. Chinese Journal of Lasers, 2021, 48(10), 202 (in Chinese).
陈丹, 刘婷, 赵艳秋, 等. 中国激光, 2021, 48(10), 202.
21 Wang C S, Wang T T, Tan M L, et al. Journal of Materials Science & Technology, 2015, 31(2), 135.
22 Gilles R, Mukherji D, Eckerlebe H, et al. Journal of Alloys and Compounds, 2014, 612, 90.
23 Sun Z H, Sun D Z, Liu J, etal. Transactions of Materials and Heat Treatment, 2017, 38(4), 87 (in Chinese).
孙中华, 孙道柱, 刘洁, 等. 材料热处理学报, 2017, 38(4), 87.
24 Yang X H, Chen W Q, Hao Z Q. Journal of Materials Engineering, 2010(9), 7 (in Chinese).
杨晓华, 陈伟庆, 郝占全. 材料工程, 2010(9), 7.
25 Xing Z Q, Pang J Y, Zhang H W, et al. Journal of Alloys and Compounds, 2023, 943, 169149.
26 Yuan J P. Effect of deformation and heat treatment on the microstructure and properties of Invar alloy. Master's Thesis, Central South University, China, 2005 (in Chinese).
袁均平. 变形及热处理对因瓦合金组织与性能的影响. 硕士学位论文, 中南大学, 2005.
27 Du K, Zhang Y, Zhang Z W, et al. Materials Science and Engineering, A, 2022, 855, 143848.
28 Hu H L, Zhao M J, Rong L J. Journal of Materials Science & Technology, 2020, 47(12), 152.
29 Yang T, Zhao Y L, Fan L, et al. Acta Materialia, 2020, 189, 47.
30 Yang X H, Chen W Q, Yuan S Q. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2009, 41(1), 136 (in Chinese).
杨晓华, 陈伟庆, 袁守谦. 西安建筑科技大学学报(自然科学版), 2009, 41(1), 136.
31 Cai K H, Ding S S, Zhang X Y. Journal of Functional Materials, 2004, 35, 1764 (in Chinese).
蔡凯洪, 丁绍松, 张晓义. 功能材料, 2004, 35(增刊1), 1764.
32 Wang X, Zhang J F, Zhang Y H, et al. Chinese Journal of Rare Metals, 2009, 33(5), 670 (in Chinese).
王鑫, 张建福, 张羊换 等. 稀有金属, 2009, 33(5), 670.
33 Ma B J. Research on composition design of welding wire, microstructure and properties of welds for low expansion Invar alloy, Master's Thesis, Hebei University of Technology, China, 2018 (in Chinese).
马宝军. 低膨胀因瓦合金焊丝成分体系设计及熔敷金属组织性能研究. 硕士学位论文, 河北工业大学, 2018.
34 Visconti P, Jones K M, Reshchikov M A, et al. Applied Physics Letters, 2000, 77(22), 3532.
35 Muto D, Araki T, Naoi H, et al. Physica Status Solidi, 2005, 202(5), 773.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed