Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22060180-8    https://doi.org/10.11896/cldb.22060180
  无机非金属及其复合材料 |
高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能
王海涛1, 施宝旭1, 赵晓旭1, 常娜2,*
1 天津工业大学环境科学与工程学院,天津 300387
2 天津工业大学化学工程与技术学院,天津 300387
Preparation and Property of CdS/BiOCl Materials: a High Efficiency Photocatalyst for Degradation of Tetracycline Hydrochloride
WANG Haitao1, SHI Baoxu1, ZHAO Xiaoxu1, CHANG Na2,*
1 School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
2 School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 17386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备了BiOCl超薄纳米片,并将CdS纳米晶体沉积于BiOCl表面制备CdS/BiOCl复合光催化剂。XRD测试结果证明CdS的沉积不会改变BiOCl的晶体结构。XPS测试结果表明CdS/BiOCl复合材料已被成功合成。SEM及HRTEM测试结果证明,CdS纳米晶体均匀沉积在BiOCl的表面。荧光光谱分析数据表明CdS/BiOCl复合材料的电子-空穴分离效果得到有效提高,均优于纯BiOCl材料,且随着Cd(Ac)2·2H2O添加量的增加,复合材料的荧光光谱强度呈现先减弱后增强的现象。根据紫外可见漫反射光谱及XPS价带谱测试结果,计算出复合材料的价带与导带电位。以盐酸四环素作为模拟污染物评价光催化剂的活性,结果表明,CdS/BiOCl复合材料光催化活性更高,仅需经过5 min的可见光照射后,优选的CdS/BiOCl(CB-8)复合材料对盐酸四环素的去除率可达70.6%,为纯BiOCl的16.2倍。最终,根据XPS价带谱和活性物种捕获实验结果推测了CdS/BiOCl复合光催化剂的光催化反应机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海涛
施宝旭
赵晓旭
常娜
关键词:  光催化  氯氧化铋  硫化镉  盐酸四环素  异质结    
Abstract: In this work, BiOCl ultrathin nanosheets were prepared by hydrothermal method, and then CdS/BiOCl composite photocatalysts were successfully synthesized by deposition method. The results of XRD proved that the introduction of CdS did not change the crystal structure of BiOCl. The XPS showed that the CdS/BiOCl composite photocatalyst was successfully prepared. SEM and HRTEM images demonstrated that CdS was deposited on BiOCl nanosheets. The fluorescence spectrum (PL) indicated that the separation of photo-induced electron-hole based on the composite photocatalyst was significantly improved compared to that of the pure BiOCl, and with the increase of Cd(Ac)2·2H2O addition amount, the fluorescence spectrum intensity first weakened and then enhanced. According to the XPS valence band spectra and UV-Vis-DRS spectra, the positions of the valence band and conduction band of the composite photocatalyst were calculated. Taking tetracycline hydrochloride (TC) as the target pollutant, photocatalysis activity of these photocatalysts had been evaluated. Results showed that the CdS/BiOCl composite photocatalyst possessed higher photocatalytic activity compared with pure BiOCl. The removed ratio reached up to 70.6% based on the optimized CdS/BiOCl (CB-8) photocatalytic after 5 min irradiation, which was 16.2 times to the pure BiOCl. Finally, the possible reaction mechanism of CdS/BiOCl photocatalyst was speculated according to the results of XPS valence band spectra and trapping experiments.
Key words:  photocatalysis    BiOCl    CdS    tetracycline hydrochloride    heterojunction
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  X703.1  
  O644  
基金资助: 天津市科技计划项目(19PTZWHZ00030)
通讯作者:  *常娜,天津工业大学化学工程与技术学院教授、博士研究生导师,天津工业大学印染废水资源化利用中外联合研究中心副主任。2012年6月毕业于南开大学化学专业,获博士学位。主要从事新型纳米材料合成及催化性能研究、高性能分离膜制备以及工业废水处理和资源化利用研究。主持国家重点研发项目子课题、国家自然科学基金、天津市重化工业节能减排科技重大专项、天津市自然科学基金项目等科研项目10余项;获天津市科技进步二等奖1项,教育部自然科学奖一等奖1项;以第一作者或通信作者发表论文40余篇;授权发明专利5项,参编国家标准2项、行业标准2项,参编英文专著1部。   
作者简介:  王海涛,天津工业大学环境科学与工程学院教授、博士研究生导师,2010年6月毕业于天津工业大学膜科学与技术专业,获博士学位。主要从事新型膜材料、光催化材料以及工业废水处理和资源化利用研究。主持国家重点研发计划、天津市生态环境治理科技重大专项、国家自然科学基金以及中央引导地方科技发展专项资金等项目10余项;以第一作者或通信作者发表论文20余篇。
引用本文:    
王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
WANG Haitao, SHI Baoxu, ZHAO Xiaoxu, CHANG Na. Preparation and Property of CdS/BiOCl Materials: a High Efficiency Photocatalyst for Degradation of Tetracycline Hydrochloride. Materials Reports, 2024, 38(6): 22060180-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060180  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22060180
1 Morsi R, Bilal M, Iqbal H M N, et al. Science of the Total Environment, 2020, 714, 136572.
2 Cai Y, Shen S, Fan J. Journal of Hazardous Materials, 2022, 421, 126673.
3 Wu Y, Ji H, Liu Q, et al. Journal of Hazardous Materials, 2022, 424, 127563.
4 Hu P, Shao J, Qian G, et al. Bioresource Technology, 2022, 355, 127286.
5 Sun J, Jin L, He T, et al. Science of the Total Environment, 2020, 740, 140001.
6 Li K, Liang Y, Yang J, et al. Journal of Alloys and Compounds, 2017, 695, 238.
7 Ding P, Ji H, Li P, et al. Applied Catalysis B: Environmental, 2022, 300, 120633.
8 Zhao X, Deng B, Li F, et al. Journal of Hazardous Materials, 2021, 420, 126577.
9 Cao T T, Cui H, Zhang Q W, et al. Applied Surface Science, 2021, 559, 149938.
10 Wu S Q, Huang Z K, Li Q C, et al. Materials Reports, 2021, 35(6), 6001(in Chinese).
伍书祺, 黄泽皑, 李晴川, 等. 材料导报, 2021, 35(6), 6001.
11 Zhong X, Zhang K X, Wu D, et al. Chemical Engineering Journal, 2020, 383, 123148.
12 Huang W, Xiao X, Lu M, et al. Journal of Alloys and Compounds, 2022, 895, 162669.
13 Xu Q, Zhang L, Cheng B, et al. Chem, 2020, 6(7), 1543.
14 Lu J, Wang Y, Liu F, et al. Applied Surface Science, 2017, 393, 180.
15 Xu F, Zhang Q, An R, et al. Journal of Alloys and Compounds, 2022, 899, 163324.
16 Behera A, Kandi D, Sahoo S, et al. The Journal of Physical Chemistry C, 2019, 123(28), 17112.
17 Hu Q, Qu W W, Yu M Y, et al. Materials Reports, 2016, 30(22), 20(in Chinese).
胡琼, 曲雯雯, 余明远, 等. 材料导报, 2016, 30(22), 20,
18 Li Q, Guo B, Yu J, et al. Journal of the American Chemical Society, 2011, 133(28), 10878.
19 Vattikuti S V P, Nagajyothi P C, Shim J. Journal of Materials Science: Materials in Electronics, 2019, 30(6), 5681.
20 Kandi D, Martha S, Thirumurugan A, et al. The Journal of Physical Chemistry C, 2017, 121(9), 4834.
21 Su Y, Xu X, Li R, et al. Chemical Engineering Journal, 2022, 429, 132241.
22 Gao X, Tang G, Peng W, et al. Chemical Engineering Journal, 2019, 360, 1320.
23 Shen Z, Li F, Lu J, et al. Journal of Colloid and Interface Science, 2021, 584, 174.
24 Wang X J, Wang Q, Li F T, et al. Chemical Engineering Journal, 2013, 234, 361.
25 Fan Q, Huang Y, Zhang C, et al. Catalysis Today, 2016, 264, 250.
26 Frindy S, Li Y, Sillanpää M S. Separation and Purification Technology, 2022, 284, 120241.
27 Shi Y, Xiong X, Ding S, et al. Applied Catalysis B: Environmental, 2018, 220, 570.
28 Tao S, Sun S, Zhao T, et al. Applied Surface Science, 2021, 543, 148798.
29 Kandi D, Behera A, Sahoo S, et al. Separation and Purification Techno-logy, 2020, 253, 117523.
30 Lin E, Huang R, Wu J, et al. Nano Energy, 2021, 89, 106403.
31 Li P, Guo M, Wang Q, et al. Applied Catalysis B: Environmental, 2019, 259, 118107.
32 Shen T, Shi X, Guo J, et al. Chemical Engineering Journal, 2021, 408, 128014.
33 Kadeer K, Tursun Y, Dilinuer T, et al. Ceramics International, 2018, 44(12), 13797.
34 Song Y, Li N, Chen D, et al. Applied Catalysis B: Environmental, 2018, 238, 255.
35 Das S, Dutta S, Tama A M, et al. Materials Science and Engineering B, 2021, 271, 115295.
36 Chen M, Guo C, Hou S, et al. Applied Catalysis B: Environmental, 2020, 266, 118614.
37 Hunge Y M, Yadav A A, Kang S W, et al. Journal of Colloid and Interface Science, 2022, 606, 454.
38 Liu Y, Hu Z, Yu J C. Chemistry of Materials, 2020, 32(4), 1488.
39 Dong H, Zhang X, Li J, et al. Applied Catalysis B: Environmental, 2020, 263, 118270.
40 Huang H, Ma C, Zhu Z, et al. Chemical Engineering Journal, 2018, 338, 218.
[1] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[2] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[3] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[4] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[5] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[6] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[7] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[8] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[9] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[10] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[11] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[12] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[13] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[14] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[15] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed