Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23060180-13    https://doi.org/10.11896/cldb.23060180
  无机非金属及其复合材料 |
高结晶度g-C3N4在光催化领域的研究进展
徐杨1,2, 刘成宝1,2,3,*, 郑磊之1,2,3, 陈丰1,2,3, 钱君超1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
1 苏州科技大学江苏省环境功能材料重点实验室, 江苏 苏州 215009
2 苏州科技大学材料科学与工程学院, 江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心, 江苏 苏州 215009
4 江苏省陶瓷研究所有限公司, 江苏 宜兴 214221
5 苏州市环境科学研究所, 江苏 苏州 215007
Research Progress of High Crystallinity g-C3N4 in Photocatalysis
XU Yang1,2, LIU Chengbao1,2,3,*, ZHENG Leizhi1,2,3, CHEN Feng1,2,3, QIAN Junchao1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
4 Jiangsu Province Ceramics Research Institute Co., Ltd.,Yixing 214221, Jiangsu, China
5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China
下载:  全 文 ( PDF ) ( 15103KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)作为具有典型二维层状结构和窄带隙的聚合物半导体,表现出优异的可见光吸收能力、稳定的物理化学性能和优良的光催化活性。然而,传统含氮前驱体热诱导聚合产生的g-C3N4结构不完全,主体是非晶或半晶质结构的melon基氮化碳,其体相和表面存在较多缺陷,导致电导率低、限制光激发电荷的分离以及电子-空穴对重组率较高,大幅降低了其催化活性,因此提高g-C3N4的结晶度是非常有必要的。本文主要总结了高结晶度氮化碳(CCN)的优势和近年来的研究进展,提高g-C3N4的结晶度不仅能在共轭平面之间建立电荷转移通道,从而提高层内电荷转移效率,而且可以与其他改性手段糅合以实现高效的协同效应。同时,通过介绍CCN的结构、表征、制备方法、改性策略和应用领域对CCN近年来的研究进展进行总结。最后,简要总结了CCN光催化材料面临的挑战和本领域未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐杨
刘成宝
郑磊之
陈丰
钱君超
邱永斌
孟宪荣
陈志刚
关键词:  半导体光催化技术  石墨相氮化碳  高结晶度    
Abstract: Graphite phase carbon nitride (g-C3N4), a polymer semiconductor with a typical two-dimensional layered structure and narrow band gap, has excellent visible light absorption capacity, stable physical and chemical properties and good photocatalytic properties. However, the structure of g-C3N4 produced by the heat-induced polymerization from traditional nitrogen-containing precursor is incomplete. The main body is melon-based carbon nitride with amorphous or semi-crystalline structure. There are many defects in its phase and surface, which lead to lower conductivity, higher electron-hole pairs recombination rate, resulting in lower catalytic activity. Therefore, it is necessary to improve the crystallinity of g-C3N4. This paper mainly summarizes the advantages of high crystalline carbon nitride (CCN) and the research progress in recent years. Increasing the crystallinity of g-C3N4 can provide charge transfer channels between the conjugated planes to improve the charge transfer efficiency, and also introduce other modification methods to achieve efficient synergies. Then, the structure, characterization, preparation, modification strategy and application fields of CCN in recent years were reviewed. Finally, the challenges and future development directions of CCN photocatalysts are summarized briefly.
Key words:  semiconductor photocatalytic technology    graphite carbon nitride    high crystallinity
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TB34  
基金资助: 江苏省自然科学基金(BK20180103;BK20180971);苏州市科技发展计划项目(SS202036)
通讯作者:  *王林山,中国有研科技集团有限公司正高级工程师、硕士研究生导师。2000年7月和2003年6月毕业于中南大学粉末冶金研究院分别获工学学士学位和工学硕士学位。主要从事粉末冶金材料与零件、金属粉末高效热管理材料等方面的研究、产品开发和产业化。截至目前,已发表论文40余篇,作为副主编出版“十一五”国家重点图书《铜及铜合金粉末与制品》,制修订国家或行业标准10项,获得省部级奖5项。Lcb@mail.usts.edu.cn   
作者简介:  徐杨,2022年6月毕业于常熟理工学院,获得工学学士学位。现为苏州科技大学材料科学与工程学院硕士研究生,在刘成宝副教授的指导下进行研究。目前主要研究领域为二维基功能材料的结构设计及性能评价。
引用本文:    
徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
XU Yang, LIU Chengbao, ZHENG Leizhi, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research Progress of High Crystallinity g-C3N4 in Photocatalysis. Materials Reports, 2024, 38(21): 23060180-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060180  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23060180
1 Zhang Y, Wu L L, Zhao X Y, et al. Advanced Energy Materials, 2018, 8 (25), 1801139.
2 Lin F, Zhou S, Wang G H, et al. Nano Energy, 2022, 99, 107432.
3 Peiris S, de Silva H B, Ranasinghe K N, et al. Journal of the Chinese Chemical Society, 2021, 68(5),738.
4 Tang C S, Cheng M, Lai C, et al. Coordination Chemistry Reviews, 2023, 474, 214846.
5 Fujishima A, Honda K. Nature, 1972, 283(5358), 37.
6 Le Pivert M, Martin N, Leprince Wang Y. Crystals, 2022, 12(3), 308.
7 Zhou P, Zhang Q H, Xu, Z K, et al. Advanced Materials, 2019, 32(7), 1904249.
8 Jayaramulu K, Mukherjee S, Morales D M, et al. Chemical Reviews, 2022, 122(24), 17241.
9 Luo N, Chen C, Yang D M, et al. Applied Catalysis B-Environmental, 2021, 299, 120664.
10 Liu Z D, Ma J l, Hong M, et al. ACS Catalysis, 2023, 13, 2106.
11 Li Y X, He R C, Han P, et al. Applied Catalysis B-Environmental. 2020, 279, 119379.
12 Liu Y, Han J, Zeng X P, et al. Chemistryselect, 2022, (7)3, e202103884.
13 Wang X C, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1),76.
14 Yu Y T, Huang H W. Chemical Engineering Journal, 2023, 453, 139755.
15 Zheng Y, Liu J, Liang J, et al. Energy & Environmental Science, 2012, 5(5),6717.
16 Lin L H, Ou H H, Zhang Y F, et al. ACS Catalysis, 2016, 6(6),3921.
17 Yan B, Chen Z G, Xu Y X. Chemistry-An Asian Journal, 2020, 15(15),2329.
18 Li Y, Gong F, Zhou Q, et al. Applied Catalysis B-Environmental, 2020, 268, 118381.
19 He W, Liu Li, Ma T T, et al. Applied Catalysis B-Environmental, 2022, 306, 121107.
20 Liu X M, Wang J, Wu D, et al. Applied Catalysis B-Environmental, 2022, 310, 121304.
21 Zeng F, Huang W Q, Xiao J H, et al. Journal Of Physics D-Applied Physics, 2019, 52(2), 025501.
22 Li Y Y, Zhou B X, Zhang H W, et al. Nanoscale, 2019, 11(14),6876.
23 Li J M, Li J, Wu C C, et al. Carbon, 2021, 179,387.
24 Li J X, Wang Y H, Li X C, et al. Journal of Alloys and Compounds, 2021, 881,160551.
25 Li Y, Zhang D N, Feng X H, et al. Chinese Journal of Catalysis, 2020, 41 (1),21.
26 Lin L H, Yu Z Y, Wang X C. Angewandte Chemie-International Edition, 2019, 58(19),6164.
27 Wirnhier E, Doeblinger M, Gunzelmann D, et al. Chemistry-A European Journal, 2011, 17 (11),3213.
28 Wang W B, Shu Z, Zhou J, et al. ACS Applied Materials & Interfaces, 2022, 14(36),41131.
29 Zhao Z l, Shu Z, Zhou J, et al. Journal of Alloys and Compounds, 2023, 938, 168484.
30 Gu Z Y, Cui Z T, Wang Z J, et al. Journal of Materials Science & Technology, 2021, 83,113.
31 Sundermeyer W. Angewandte Chemie-International Edition, 1965, 4 (3),222.
32 Sundermeyer W. Angewandte Chemie-International Edition, 1967, 6(1),90.
33 Zhao B B, Gao D D, Liu Y P, et al. Journal of Colloid and Interface Science, 2022, 608, 1268.
34 Li Y, Zhang D N, Fan J J, et al. Chinese Journal of Catalysis, 2021, 42 (4), 627.
35 Zhang L, Li L J, Zhao C, et al. Solid State Communications, 2022, 354, 114915.
36 Li Y, Wang B B, Xiang Q J, et al. Dalton Transactions, 2022, 51 (43),16527.
37 Suter T, Brazdova V, McColl K, et al. Journal of Physical Chemistry C, 2018, 122(44),25183.
38 Zhang M L, Yang L, Wang Y J, et al. Applied Surface Science, 2019, 489,631.
39 Bojdys M J, Mueller J O, Antonietti M, et al. Chemistry-A European Journal, 2008, 14 (27),8177.
40 Song J, Liu X L, Zhang C Y, et al. Materials Today Communications, 2022, 33, 104431.
41 Xie Y D, Kocaefe D, Chen, C Y, et al. Journal of Nanomaterials, 2016, 2016, 2302595.
42 Lin B, Chen S, Dong F, et al. Nanoscale, 2017, 9 (16),5273.
43 Liang Z W, Zhuang X J, Tang Z C, et al. Journal of Materials Chemistry A, 2021, 9 (11),6805.
44 Suchitra S M, Udayashankar N K. Materials Research Express, 2017, 4 (12), 124001.
45 Si Y S, Sun Z Z, Huang L M, et al. Journal of Materials Chemistry A, 2019, 7 (15),8952.
46 Xu Y S, He X, Zhong H, et al. Applied Catalysis B-Environmental, 2019, 246,349.
47 Wu X H, Ma H Q, Zhong W, et al. Applied Catalysis B-Environmental, 2020, 271, 118899.
48 Srinivasan K V, Chaskar P K, Dighe S N, et al. Heterocycles, 2011, 83(11),2451.
49 Yuan Y P, Yin L S, Cao S W, et al. Green Chemistry, 2014, 16 (11),4663.
50 Yua Y Z, Wang J G. Ceramics International, 2016, 42(3),4063.
51 Annis J W, Fisher J M, Thompsett D, et al. Inorganics, 2021, 9(6), 40.
52 Hu C C, Wang M S, Hung W Z. Chemical Engineering Science, 2017, 167,1.
53 Xia P F, Antonietti M, Zhu B C, et al. Advanced Functional Materials, 2019, 29 (15), 1900093.
54 Cui L F, Fang Z R, Liu Y F, et al. Inorganic Chemistry Frontiers, 2019, 6 (5) 1304.
55 Bai X J, Wang X Y, Lu X W, et al. Crystengcomm, 2021, 23 (6),1366.
56 Yang Z T, Li L L, Yu H Y, et al. Chemosphere, 2021, 271, 129503.
57 Kang S F, Zhang L, He M F, et al. Carbon, 2018, 137,19.
58 Zhang G G, Lin L H, Li G S, et al. Angewandte Chemie-International Edition, 2018, 57 (30),9372.
59 Bhunia M K, Yamauchi K, Takanabe K. Angewandte Chemie-Internatio-nal Edition, 2014, 53 (41),11001.
60 Zhang G Q, Xu Y S, He C X, et al. Applied Catalysis B-Environmental, 2021, 283, 119636.
61 Li H, Zhu B C, Cao S W, et al. Chemical Communications, 2020, 56 (42),5641.
62 Huang J J, Du J M, Du H W, et al. Acta Physico-Chimica Sinica, 2020, 36 (7), UNSP 1905056 (in Chinese).
黄娟娟, 杜建梅, 杜海威, 等. 物理化学学报, 2020, 36 (7), UNSP 1905056.
63 Wang L Y, Hou Y W, Xiao S S, et al. RSC Advances, 2019, 9 (67),39304.
64 Jin A L, Liu X, Li M R, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7 (5),5122.
65 Dou Q, Hou J H, Hussain A, et al. Journal of Colloid And Interface Science, 2022, 624,79.
66 Xia Y, Tian Z H, Heil T, et al. Joule, 2019, 3 (11),2792.
67 Ong W J, Shak K P Y. Solar Rrl. 2020, 4 (8), 2000132.
68 Xu Z, Shi Y X, Li L L, et al. Journal of Alloys and Compounds, 2022, 895, 162667.
69 Yang T Y, Shao Y Y, Hu J D, et al. Chemical Engineering Journal, 2022, 448, 137613.
70 Wang L, Cui D D, Ren L, et al. Journal of Materials Chemistry A, 2019, 7 (22),13629.
71 Shi Y X, Li L L, Xu Z, et al. Materials Research Bulletin, 2022, 150, 111789.
72 Wen J Q, Xie J, Chen X B, et al. Applied Surface Science, 2017, 391,72.
73 Yang F Y, Qu, J F, Zheng, Y, Cai, et al. Nanoscale, 2022, 14 (41),15217.
74 Lin Y, Wang X X, Fu X Z, et al. Journal of Materials Chemistry A, 2022, 10(15),8252.
75 Shen S H, Chen J, Wang Y Q, et al. Science Bulletin, 2022, 67 (5),520.
76 Wang H, Bian Y R, Hu J T, et al. Applied Catalysis B-Environmental, 2018, 238,592.
77 Zhai B Y, Li H G, Gao G Y, et al. Advanced Functional Materials, 2022, 32 (47), 2207375.
78 Mohd Hatta M H, Lintang H O, Lee S L,et al. Turkish Journal of Che-mistry, 2019, 43(1),63.
79 Li Y, Li B H, Zhang D N, Cheng L, et al. ACS Nano, 2020, 14 (8),10552.
80 Cheng L, Zhang P, Wen Q Y, et al. Chinese Journal of Catalysis, 2022, 43 (2),451.
81 Sun K, Wang Y, Chang C S, et al. Chemical Engineering Journal, 2021, 425, 131591.
82 Du J Y, Fan Y F, Gan X R, et al. Electrochimica Acta, 2020, 330, 135336.
[1] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[2] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[3] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[4] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[5] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[6] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[7] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[8] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[9] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[10] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[11] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[12] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[13] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[14] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[15] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed