Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23020-23026    https://doi.org/10.11896/cldb.19110056
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制
俞坤1, 刘金香1, 谢水波1,2, 刘迎九1, 葛玉杰1
1 南华大学土木工程学院,衡阳 421001
2 南华大学污染控制与资源化技术湖南省重点实验室,衡阳 421001
Study on the Properties and Mechanism of U(Ⅵ) Adsorption of PPy/g-C3N4
YU Kun1, LIU Jinxiang1, XIE Shuibo1,2, LIU Yingjiu1, GE Yujie1
1 School of Civil Engineering, University of South China, Hengyang 421001, China
2 Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang 421001, China
下载:  全 文 ( PDF ) ( 3147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以石墨相氮化碳(g-C3N4)、聚吡咯(PPy)为原料,采用原位聚合法制备聚吡咯/石墨相氮化碳(PPy/g-C3N4)复合材料,探究PPy/g-C3N4对水中U(Ⅵ)的吸附性能。研究pH值、温度、PPy/g-C3N4投加量、反应时间、U(Ⅵ)初始浓度等影响因素对PPy/g-C3N4吸附U(Ⅵ)的影响。结果表明:在pH=5、U(Ⅵ)初始浓度为5 mg/L、PPy/g-C3N4的投加量为200 mg/L、吸附时间为20 min的条件下,PPy/g-C3N4对U(Ⅵ)的最大吸附率为93.22%。PPy/g-C3N4对U(Ⅵ)的吸附等温线符合Freundlich模型,吸附动力学符合准二级动力学。SEM-EDS、XRD分析表明,本工作成功制得了PPy/g-C3N4复合材料。XPS和FTIR结果说明,PPy/g-C3N4中的含碳、氮官能团和含氧官能团与U(Ⅵ)发生络合作用, 从而显著提高了其吸附性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞坤
刘金香
谢水波
刘迎九
葛玉杰
关键词:  石墨相氮化碳  聚吡咯    吸附    
Abstract: Polypyrrole/graphite phase carbon nitride (PPy/g-C3N4) composites were prepared by in-situ polymerization using graphite phase carbon nitride (g-C3N4) and polypyrrole (PPy) as raw materials to explore the adsorption performance of PPy/g-C3N4 to U(Ⅵ) in wastewater. The effects of pH, temperature, PPy/g-C3N4 dosage, reaction time and initial concentration of U(Ⅵ) on the adsorption of U(Ⅵ) on PPy/g-C3N4 were studied. The results showed that at pH=5, the initial concentration of U(Ⅵ) was 5 mg/L, the dosage of PPy/g-C3N4 was 200 mg/L, and the adsorption time was 20 min, the maximum adsorption rate of PPy/g-C3N4 to U(Ⅵ) was as high as 93.22%. The adsorption isotherm of U(Ⅵ) by PPy/g-C3N4 accords with the Freundlich model, and the adsorption kinetics accords with quasi-secondary kinetics. SEM-EDS and XRD analysis indicated that the PPy/g-C3N4 material was successfully prepared. The results of XPS and FTIR indicated that PPy/g-C3N4 contained carbon, nitrogen functional group and oxygen-containing functional group to cooperate with U(Ⅵ), which greatly improved its adsorption perfor-mance.
Key words:  graphite phase carbon nitride    polypyrrole    uranium    adsorption
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  O647.3  
基金资助: 国家自然科学基金(11475080);南华大学博士科研启动基金(2016XQD06);湖南省研究生科研创新项目(CX20190742)
通讯作者:  fardworm@163.com   
作者简介:  俞坤,南华大学,硕士研究生。2017年6月,在浙江科技学院获得学士学位。2017年9月至今,在南华大学攻读硕士学位。主持省创新课题1项。
刘金香,博士,南华大学,教授,硕士研究生导师。2015年毕业于南华大学核资源工程学院采矿工程专业。主要从事水处理理论与技术及放射性污染控制等方面的研究。主持省自然科学基金等项目4项,参与国家自然科学基金及省厅级科研项目8项。发表学术论文60篇,其中SCI 、EI学术论文10余篇,获得发明专利1项。
引用本文:    
俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
YU Kun, LIU Jinxiang, XIE Shuibo, LIU Yingjiu, GE Yujie. Study on the Properties and Mechanism of U(Ⅵ) Adsorption of PPy/g-C3N4. Materials Reports, 2020, 34(23): 23020-23026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110056  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23020
1 Haribala B, Bitao H, Chengguo W, et al. International Journal of Environmental Research and Public Health,2017,14(3),300.
2 Li X, Ding C, Liao J, et al. Journal of Environmental Science,2017,53(3),9.
3 Zheng Y, Jiao Y, Zhu Y, et al. Journal of the American Chemical Society,2017,139(9),3336.
4 Li H, Na L, Ming W, et al. Royal Society Open Science,2018,5(3),171419.
5 Liu H, Chen D, Wang Z, et al. Applied Catalysis B Environmental,2017,203(4),300.
6 Shen C, Chen C, Wen T, et al. Journal of Colloid & Interface Science,2015,456(4),7.
7 He Q, Zhou F, Zhan S, et al. Applied Surface Science,2018,430(2),325.
8 Chi S, Ji C, Sun S, et al. Industrial & Engineering Chemistry Research,2016,55(46),12060.
9 Safdari F, Shamkhali A N, Tafazzoli M, et al. Journal of Molecular Liquids,2018,260(7),423.
10 Guo S, Zhang C, Zhang F, et al. Materials Science & Engineering Confe-rence Series,2017.
11 Kumar R, Barakat M A, Alseroury F A. Scientific Reports,2017,7(1),1.
12 Liu J X,Chen Z G,Yu K, et al. Journal of Radioanalytical and Nuclear Chemistry,2019,321(3),1005.
13 Zhang Y, Zhang H S, Liu Q, et al. Dalton Transactions,2018,7(2),1.
14 Zhao R, Li X, Su J, et al. Applied Surface Science,2017,39(2),810.
15 Sun Y, Ding C, Cheng W, et al. Journal of Hazardous Materials,2014,280(17),399.
16 Ke L, Li P, Wu X, et al. Applied Catalysis B: Environmental,2017,205(8),319.
17 We X, Liu Q, Zhang H, et al. Journal of Colloid & Interface Science,2017,511(33),1.
18 Han H, Fu M, Li Y, et al. Chinese Journal of Catalysis,2018,39(4),831.
19 Huang G Q, Bai Z Y, Chen Z W, et al. Materials Review B: Research Papers,2019,33(7),2436(in Chinese).
黄国庆,白震媛,陈兆文,等.材料导报:研究篇,2019,33(7),2436.
20 Hu T, Ding S, Deng H. Chemical Engineering Journal,2016,289(6),270.
21 Tavengwa N T, Cukrowska E, Chimuka L. Toxicological & Environmental Chemistry,2016,98(1),1.
22 Zou Y, Wang X, Wu F, et al. ACS Sustainable Chemistry & Engineering,2016,5(1),1173.
23 Xiao G,Wang Y Q,Xu S N,et al. Chinese Journal of Chemical Enginee-ring,2019,27(2),305.
24 Liu H, Li M, Chen T, et al. Environmental Science & Technology,2017,51(16),9227.
25 Zargoosh K, Abedini H, Abdolmaleki A, et al. Industrial & Engineering Chemistry Research,2013,52(42),14944.
26 Zhao H X,Yu H T, Quan X,et al. Applied Catalysis B: Environmental,2014,55(39),46.
27 Yu J, Wang K, Xiao W, et al. Physical Chemistry Chemical Physics,2014,16(23),11492.
28 Wang H,Zhang X,Xie J, et al. Nanoscale,2015,7(27),5152.
29 Liang Z, Wen Q, Wang X, et al. Applied Surface Science,2016,386(41),451.
30 Pidchenko I, Kvashnina K O, Yokosawa T, et al. Environmental Science & Technology,2017,51(4),2217.
31 Liao Y, Wang M, Chen D. Industrial & Engineering Chemistry Research,2018,57(25),8472.
32 Liu Y, Ma H M, Zhang Y, et al. Biosensors & Bioelectronics,2016,86(8),439.
33 Zhao W Y, Yi F T, Gan H H, et al. Materials Reports B: Research Papers,2019,33(10),3377(in Chinese).
赵文玉,易赋淘,甘慧慧,等.材料导报:研究篇,2019,33(10),3377.
34 Zargoosh K, Abedini H, Abdolmaleki A, et al. Industrial & Engineering Chemistry Research,2013,52(42),14944.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[4] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[5] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[6] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[7] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[8] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[9] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[10] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[11] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[12] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[13] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[14] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[15] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed