Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5016-5022    https://doi.org/10.11896/cldb.18090044
  材料与可持续发展(三)——环境友好材料与修复材料 |
溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述
王蓝青1,2, 钟溢健1,2, 陈南春3, 解庆林1,2
1 桂林理工大学环境科学与工程学院,桂林 541004;
2 广西环境污染控制理论与技术重点实验室,桂林 541004;
3 桂林理工大学材料科学与工程学院,桂林 541004
Preparation of Ion Imprinted Polymers by Sol-Gel Method and Their Application in Metal Ions Selective Adsorption:a Review
WANG Lanqing1,2, ZHONG Yijian1,2, CHEN Nanchun3, XIE Qinglin1,2
1 College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
2 The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, China;
3 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 3053KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子印迹聚合物(Ion imprinted polymers,IIPs)是一种具有三维空间结构,对目标离子有更强亲和力的聚合材料。该材料通常可通过模板离子与功能单体螯合,经交联聚合、模板洗脱后获得。IIPs由于具有结构稳定、特异识别与高选择性等特点,在重金属污染处理领域具有广阔的应用前景。然而,IIPs的印迹位点分布不均、印迹位点包埋过深以及印迹材料传质效率低等问题,限制了IIPs对重金属离子的选择吸附以及后续应用。因此,在IIPs的制备过程中,亟须采取一种理想的IIPs制备方法,解决印迹位点包埋,改善模板离子的洗脱效果,促进印迹位点均匀分布,提高IIPs的传质效率,发挥其独特优异性能。
  近年来开发了多种IIPs制备方法,通过优化制备IIPs的组装、聚合方式,克服了制备过程中的部分难点,保证IIPs特异识别选择性的同时,大幅提升了IIPs的吸附性能。IIPs制备方法主要包括基于逐步聚合机理的溶胶-凝胶法和基于连锁聚合机理的自由基聚合法。溶胶-凝胶制备方法反应条件温和,反应过程易控,产物有良好的力学性能、热稳定性与结构预定性,得到了广泛应用。
  结合溶胶-凝胶法制备IIPs的工艺途径大致可分为包埋法、共聚法与表面印迹法。包埋法制备过程简便,反应条件温和,有机组分与作用位点稳定均匀分布于材料中,但制备过程容易造成模板离子包埋过深、不易洗脱、印迹位点不易暴露、传质效率较差。基于共聚法制备的IIPs表面粗糙、不规则,具有多孔结构与较大的比表面积,能促进小尺寸粒子进入到材料孔道,提高对模板离子的捕获与识别;但模板离子与功能单体的结合程度受限,IIPs的功能基团空间取向不稳定,限制了IIPs的特定选择功能。表面印迹法保留了基体材料的性能优势,通过将特异性印迹位点作用(负载、接枝、修饰等)于载体表面,可增大吸附容量、增强传质效率、提高吸附选择性,成为近年来离子印迹聚合物的热点研究方向之一。
  本文着重介绍了溶胶-凝胶法制备IIPs的主要工艺途径及特点,阐述了溶胶-凝胶法制备的典型IIPs(铜、铅、镉、汞、铬)及其选择性吸附重金属的应用,并对IIPs研究前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王蓝青
钟溢健
陈南春
解庆林
关键词:  离子印迹聚合物  溶胶-凝胶法  重金属离子  选择吸附    
Abstract: Ion imprinted polymers (IIPs) are polymeric materials, which have a three-dimensional structure and are capable of higher ionic recognition. The materials, synthesized from cross-linking polymerization of functional monomers with template ions and followed by elution of template. Owing to structural stability, specific recognition and high selectivity, IIPs possess broad potential application prospects in the field of heavy metal pollution remediation. However, the heterogeneity of imprinting sites distribution, the blocking of imprinting sites, and the low mass transfer efficiency have become the bottlenecks of IIPs in the application niches of heavy metal ions selective adsorption. Therefore, novel IIPs synthesis strategies to address the bottlenecks mentioned above are in badly need.
  A wide variety of IIPs synthesis strategies have been explored in recent years. Some issues have been overcome by optimizing the assembly and polymerization processes in IIPs synthesis. Correspondingly, the special recognition and adsorption capacities of IIPs have been improved. Assembly and polymerization processes in IIPs synthesis are mainly realized with sol-gel technology based on step by step synthesis and free ra-dical polymerization method based on chain polymerization. Due to mild reaction condition, simplicity of process control, structural predetermination, thermostability and mechanical strength of products, sol-gel technology has prevailed in many chemical scenarios.
  Sol-gel technology for IIPs synthesis can be mainly divided into three types, including embedding, copolymerization, and surface imprinting technique. The embedding method possesses the advantages of operational simplicity, mild reaction condition, distribution homogeneity of orga-nic composition and imprinting sites in IIPs, whereas over-depth and hard-elution of template ions, poor imprinting sites exposure, and slow mass transfer are the inherent insufficiency. The IIPs obtained from copolymerization with nanoscale porous structure and large specific area provide spatial accessibility for small size particles which is beneficial for the capture and recognition of template ions. Meanwhile, IIPs obtained from copolymerization still struggle with the limitation of bonding ability between template and functional monomer, instability of spatial orientation functio-nal group. The surface imprinting technique maintaining the inherent features of matrix and endowing supporter surface with imprinting sites by loading, grafting, and modification has been widely attracting lots of research interest. Thus, IIPs obtained from surface imprinting technique possess high adsorption capacity, fast mass transfer, high adsorption selectivity.
  This current research progress focuses on the routes of sol-gel technology for IIPs synthesis and corresponding features. The three main sol-gel strategies, including embedding, copolymerization, and surface imprinting technique, with their unique properties are discussed. Application of IIPs in heavy metal (Cu2+, Pb2+, Cd2+, Hg2+, Cr6+) pollution remediation is also introduced. In conclusion, a summary and the perspectives on the directions that might lead the future development of this amazing field are presented.
Key words:  ion imprinting polymers    sol-gel method    metal ions    adsorption selectivity
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  O635  
基金资助: 国家自然科学基金委地区基金(41662005);广西环境污染控制理论与技术重点实验室研究基金(001102216078);桂林理工大学科研启动基金(GUTQDJJ2015027);广西中青年能力项目(2018KY0249)
通讯作者:  xqinglin@hotmail.com   
作者简介:  王蓝青,2017年6月获得工学学士学位。现就读于桂林理工大学,在解庆林教授的指导下攻读硕士学位。目前主要研究领域为环境功能材料制备及其处理含重金属离子废水;解庆林,教授,博士研究生导师。研究方向为水污染控制、环境污染控制化学等。先后发表国内外论文160余篇,申请发明专利15项,多次主持国家自然科学基金、广西自然科学基金等纵向项目,中国地质调查局项目以及中海石油公司湛江分公司项目横向项目。
引用本文:    
王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
WANG Lanqing, ZHONG Yijian, CHEN Nanchun, XIE Qinglin. Preparation of Ion Imprinted Polymers by Sol-Gel Method and Their Application in Metal Ions Selective Adsorption:a Review. Materials Reports, 2020, 34(5): 5016-5022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090044  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5016
1 Kong D L, Qiao N, Liu H, et al. Chemical Engineering Journal, 2017, 326, 141.
2 Xu Y, Huang M H, Luo X B. Applied Surface Science, 2019, 467, 135.
3 Shah Syed Mazhar, Su X G, Muhammad Faheem, et al. Chemistry Select, 2019, 4(1), 259.
4 Peyman Shirazifard, Sodeh Sadjadi, Seyed Javad Ahmadi, et al. Separation Science and Technology, 2016, 51(2), 248.
5 Haupt Karsten, Mosbach Klaus. Chemical Reviews, 2000, 100(7), 2495.
6 Basudam Adhikari, Sarmishtha Majumdar. Progress in Polymer Science, 2004, 29(7), 699.
7 Zeng J X, Lv C Q, Liu G Q, et al. Journal of Membrane Science, 2019, 572, 428.
8 Chen L, Wu Y L, Dong H J, et al. Separation and Purification Techno-logy, 2018, 197, 70.
9 Liu Y L, Ai K L, Lu L H. Chemical Reviews, 2014, 114(9), 5057.
10 Jun Matsui, Ian A Nicholls, Isao Karube, et al. ChemInform, 1996, 61(16), 5414.
11 Ozkahraman Bengi. Journal of Polymer and the Environment, 2018, 26(3), 1113.
12 Luo X B, Guo B, Luo J M, et al. ACS Sustainable Chemistry & Enginee-ring, 2015, 3(3), 460.
13 Hiroyuki Nishide, Eishun Tsuchida. Die Makromolekulare Chemie, 1976, 177, 2295.
14 Biju V M, Mary Gladis J, Prasada Rao T. Analytica Chimica Acta, 2003, 478(1), 43.
15 Kala R, Mary Gladis J, Prasada Rao T. Analytica Chimica Acta, 2004, 518(1-2), 143.
16 He F F, Wang H Q, Wang Y Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(1), 167.
17 Wu X Y. Microchimica Acta, 2012, 176(1-2), 23.
18 Chang S, Ding G S, Tang A N, et al. Analytical Methods, 2017, 9, 1658.
19 Kong D L, Wang N, Qiao N, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(8) 7401.
20 Periyasamy Soodamani, Gopalakannan Venkatrajan, Viswanathan Natrayasamy. Carbohydrate Polymers, 2017, 174, 352.
21 Yang S, Qian J, Kuang L J, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 29337.
22 Zhu F, Li L W, Xing J D. Journal of Hazardous Materials, 2017, 321, 103.
23 Ma Q, Wanyan S J, Zhu Y B, et al. Materials Reviews, 2018, 32(s1), 113(in Chinese).
马勤, 完彦少君, 朱雪斌, 等. 材料导报, 2018, 32 (专辑31), 113.
24 Branger Catherine, Meouche Wakid, Margaillan Andre. Reactive & Functional Polymers, 2013, 73(6), 859.
25 Kang Jin Kyu, Lee Seung Chan, Kim Song Bae. Microporous and Mesoporous Materials, 2018, 272, 193.
26 刘占超, 胡兆勇, 高延敏, 等. 中国专利, CN104163921A, 2014.
27 杨虹, 冯启言, 田慧娟, 等. 中国专利,CN201510700581.4, 2015.
28 Li W M, He R, Tan L, et al. Journal of Sol-Gel Science and Technology, 2016, 78(3), 1.
29 Fan H T, Lu Y, Liu A J, et al. Analytica Chimica Acta, 2015, 897, 24.
30 Fan H T, Tang Q, Sun Y, et al. Chemical Engineering Journal, 2014, 258, 146.
31 Guney Sevgi, Guney Orhan. Sensors and Actuators B-Chemical, 2016, 231, 45.
32 Zhang Z, Li J H, Song X L, et al. RSC Advances, 2014, 4(87), 46444.
33 Ren Z Q, Zhu X Y, Du J, et al. Applied Surface Science, 2018, 435, 574.
34 Khoddami Nafiseh, Shemirani Farzaneh. Talanta, 2016, 146, 244.
35 Zargar Behrooz, Khazaeifar Ali, Microchimica Acta, 2017, 184(11), 4521.
36 Jia J, Wu A H, Luan S J. Chemical Research and Application, 2015 (1), 8(in Chinese).
贾晋, 吴爱华, 栾胜基, 化学研究与应用, 2015(1),8.
37 Huang J F. Sol-gel principle and technology, Chemical Industry Press, China, 2005(in Chinese).
黄剑锋编. 溶胶-凝胶原理与技术, 化学工业出版社, 2005.
38 Zou H, Wu S S, Shen J. Chemical Reviews, 2008, 108(9), 3893.
39 Fu J Q, Chen L X, Li J H, et al. Journal of Materials Chemistry A, 2015, 3(26), 13598.
40 Buhani, Narsito, Nuryono, et al. Desalination and Water Treatment, 2015, 55(5), 1240.
41 Zhu B, Zhou L Y, Zhang Q, et al. Desalination and Water Treatment, 2017, 86, 231.
42 Fan H T, Sun X T, Li W X.Journal of Sol-Gel Science and Technology, 2014, 72(1), 144.
43 Ferreira Vanessa R A, Azenha Manuel A, Mêna M Teresa, et al. Journal of Molecular Recognition, 2018, 31(6), 1.
44 Ghanei-Motlagh M, Taher M A. Chemical Engineering Journal, 2017, 327, 135.
45 Xu S F, Chen L X, Li J H, et al. Journal of Hazardous Materials, 2012, 237, 347.
46 Zhang Q G, Wu J Y, Luo X B.RSC Advances, 2016, 6(18), 14916.
47 Karagoz Fehmi, Guney Orhan. Journal of Sol-Gel Science and Technology, 2015, 76(2), 349.
48 Liang Q W, Geng J J, Luo H J, et al. Journal of Molecular Liquids, 2017, 248, 767.
49 Qi X, Gao S, Ding G S, et al. Talanta, 2017, 162, 345.
50 Liang Q W, Luo H J, Geng J J,et al. Chemical Engineering Journal, 2017, 338, 62.
[1] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[2] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[3] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[4] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[5] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[6] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[7] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[8] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[9] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[10] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[11] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[12] 陈 雨,余 飞,刘禹彤,徐小楠,张秋平,袁 欢,徐 明. 不同合成过程对溶胶-凝胶法制备的ZnO/Ag纳米复合材料光催化性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 120-124.
[13] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
[14] 高金凤, 李明慧, 徐键, 方刚. 溶胶-凝胶法制备铜锌锡硫薄膜及其太阳能电池的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 146-151.
[15] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed