Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1587-1591    https://doi.org/10.11896/j.issn.1005-023X.2018.10.003
  材料研究 |
新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征
许连强1,2,唐志雄2,唐少龙2,都有为2
1 宁夏师范学院物理与电子信息工程学院,纳米结构及功能材料工程技术研究中心,固原756000;
2 南京大学物理学院,江苏省纳米技术重点实验室,人工微结构科学与技术协同创新中心,南京微结构国家实验室,南京 210093
Characterization of Magnetic Properties of CoPd Alloy Nanoparticles Synthesized via a Novel Sol-Gel Process
XU Lianqiang1,2, TANG Zhixiong2, TANG Shaolong2, DU Youwei2
1 School of Physics and Electronic Information Engineering, Engineering Research Center of Nanostructure and Functional Materials, Ningxia Normal University, Guyuan 756000;
2 Jiangsu Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, School of Physics, Nanjing University, Nanjing 210093
下载:  全 文 ( PDF ) ( 3043KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对一种新颖的溶胶-凝胶技术进行改进,在不借助氢气还原的条件下,成功制备了面心立方相CoPd合金纳米颗粒,并使用X射线衍射仪(XRD)和高分辨透射电子显微镜(HRTEM)对CoPd合金纳米颗粒进行了表征。分析结果显示:CoPd合金纳米颗粒的晶粒尺寸介于4~12 nm之间,平均约为9 nm;其在室温下展示出超顺磁性,阻塞温度为250 K。这项新颖的溶胶-凝胶技术在合成纳米合金颗粒方面具有应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许连强
唐志雄
唐少龙
都有为
关键词:  CoPd合金  纳米颗粒  溶胶-凝胶法  超顺磁性    
Abstract: The present work improved a novel sol-gel process, and made a successful attempt to prepare CoPd alloy nanoparticles by means of this facile one-pot reaction without H2 reduction. The formation of face-centered cubic (fcc) CoPd nanoalloy nano-particles were confirmed by the examinations of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The analyses show that the grain sizes of the synthesized nanoparticles range from 4 nm to 12 nm with average about 9 nm, and the synthesized nanoparticles exhibit typical superparamagnetic behavior at 300 K along with a blocking temperature at 250 K. This novel silica sol-gel strategy is expected to display potential application in preparing other nanoalloy nanoparticles.
Key words:  CoPd alloy    nanoparticles    sol-gel method    superparamagnetic
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  O482.54  
  O482.52+2  
基金资助: 国家重点基础研究发展计划(2012CB932304);国家自然科学基金(U1232210;11374146);宁夏自然科学基金(NZ15262);宁夏高等学校科学研究项目(宁教高[2014] 222号文件);宁夏师范学院重点科学研究项目(NXSFZD1511)
作者简介:  许连强:男,1977年生,博士,副教授,主要从事纳米材料的制备、表征及磁性能研究 E-mail:18609597303@163.com 唐少龙:通信作者,男,1963年生,教授,博士研究生导师,主要从事磁学、磁光和磁性材料方面的研究 E-mail:tangsl@nju.edu.cn
引用本文:    
许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
XU Lianqiang, TANG Zhixiong, TANG Shaolong, DU Youwei. Characterization of Magnetic Properties of CoPd Alloy Nanoparticles Synthesized via a Novel Sol-Gel Process. Materials Reports, 2018, 32(10): 1587-1591.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.003  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1587
1 Kawabata A, Kubo R. Electronic properties of fine metallic particles. Ⅱ. Plasma resonance absorption [J]. Journal of the Physical Society of Japan,1966,21(9):1765.
2 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
3 张宪科.一维钛酸盐和亚锰酸盐纳米结构的制备和性能研究[D].南京:南京大学,2010.
4 Bao J, Chen W, Liu T, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation [J]. ACS Nano,2007,1(4):293.
5 Kobayashi H, Yamauchi M, Kitagawa H, et al. Hydrogen absorption in the core/shell interface of pd/pt nanoparticles [J]. Journal of the American Chemical Society,2008,130(6):1818.
6 Zhu C, Yang M, Sun J, et al. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium [J]. Chemistry, 2013,19(3):1104.
7 Yin A X, Min X Q, Zhang Y W, et al. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes [J]. Journal of the American Chemical Society,2011,133(11):3816.
8 Liu X, Wang D, Li Y. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures [J]. Nano Today,2012,7(5):448.
9 Wang X, Liu D, Song S, et al. Synthesis of highly active Pt-CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane [J]. Chemical Communications,2012,48(82):10207.
10 Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation [J]. ACS Nano,2015,4(1):547.
11 Xi P, Cao Y, Yang F, et al. Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for methanol oxidation reaction [J]. Nanoscale,2013,5(13):6124.
12 Costa N J S, Guerrero M, Collière V, et al. Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts [J]. ACS Catalysis,2014,4(4):1735.
13 Gksu H, Ho S F, Metin , et al. Tandem dehydrogenation of ammonia borane and hydrogenation of nitro/nitrile compounds catalyzed by graphene-supported NiPd alloy nanoparticles [J]. ACS Catalysis,2014,4(6):1777.
14 Dhankhar A, Rai R K, Tyagi D, et al. Synergistic catalysis with MI-101:Stabilized highly active bimetallic NiPd and CuPd alloy nanoparticle catalysts for C-C coupling reactions [J]. Chemistryselect,2016,1(12):3223.
15 Gksu H, Can H, Sendil K, et al. CoPd alloy nanoparticles catalyzed tandem ammonia borane dehydrogenation and reduction of aromatic nitro, nitrile and carbonyl compounds [J]. Applied Catalysis A General,2014,488:176.
16 Mazumder V, Chi M, Mankin M N, et al. A facile synthesis of MPd (M=Co, Cu) nanoparticles and their catalysis for formic acid oxidation [J]. Nano Letters,2012,12(2):1102.
17 Sun D, Mazumder V, Metin , et al. Methanolysis of ammonia borane by CoPd nanoparticles [J]. ACS Catalysis,2012,2(6):1290.
18 Sevim M, Sener T, Metin . Monodisperse MPd (M:Co, Ni, Cu) alloy nanoparticles supported on reduced graphene oxide as cathode catalysts for the lithium-air battery [J]. International Journal of Hydrogen Energy,2015,40(34):10876.
19 Li P, Liu W, Dennis J S, et al. Ultrafine alloy nanoparticles converted from 2D intercalated coordination polymers for catalytic application [J]. Advanced Functional Materials,2016,26(31):5658.
20 Oh H J, Dao V D, Choi H S. Cost-effective CoPd alloy/reduced graphene oxide counter electrodes as a new avenue for high-efficiency liquid junction photovoltaic devices [J]. Journal of Alloys & Compounds,2017,705:610.
21 Mudinepalli V R, Chen Y C, Chang P C, et al. Hydrogenation effect on uniaxial magnetic anisotropy of a CoxPd1-x alloy microstructure [J]. Journal of Alloys and Compounds,2017,695:2365.
22 Vivas L G, Rubín J, Figueroa A I, et al. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles [J]. Physical Review B, 2016,93(17):174410.
23 Artemev E M, Buzmakov A E, Tsikalov V S, et al. Magnetic pro-perties and phase composition of thin films of Со-Рd alloys [J]. Bulletin of the Russian Academy of Sciences Physics,2016,80(11):1388.
24 Myagkov V G, Bykova L E, Zhigalov V S, et al. Fourfold magnetic anisotropy of CoPd alloy, obtained by solid state reactions in epitaxal Pd/hcp-Сo and Pd/fcc-Co bilayers [J]. Solid State Phenomena,2015,233-234:571.
25 Krawczyk M, Zommer L, Lesiak B, et al. Surface composition of the CoPd alloys studied by electron spectroscopies [J]. Surface & Interface Analysis,2015,25(5):356.
26 Guo Z B, Mi W B, Li J Q, et al. Enhancement in anomalous Hall resistivity of Co/Pd multilayer and CoPd alloy by Ga+ ion irradiation [J]. Epl,2014,105(4):107.
27 Dai J, Du Y, Ping Y D. Preparation and characterization of Pt/Co-core Au-shell magnetic nanoparticles[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie,2006,632(6):1108.
28 Lu Y, Yin Y, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach [J]. Nano Letters,2002,2(3):183.
29 Carpenter E E, Seip C T, Oconnor C J. Magnetism of nanophase metal and metal alloy particles formed in ordered phases [J]. Journal of Applied Physics,1999,85(8):5184.
30 Warren S C, Perkins M R, Adams A M, et al. A silica sol-gel design strategy for nanostructured metallic materials [J]. Nature Materials,2012,11(5):460.
31 Li P, Jiang W, Li F. Non-aqueous sol-gel preparation of carbon-supported nickel nanoparticles [J]. Journal of Sol-Gel Science and Technology,2013,65(3):359.
32 Li P Y, Cao Z H, Meng X K. Facile synthesis of superparamagnetic Ni-Fe ultrafine nanoalloy nanoparticles with equilibrium ordered phase structure via a sol-gel process [J]. Dalton Transactions,2012,41(39):12101.
33 Li P Y, Syed J A, Meng X K. Sol-gel preparation and characterization of NiCo and Ni3Fe nanoalloys [J]. Journal of Alloys & Compounds,2012,512(1):47.
34 Jiang Y, Yang S, Hua Z, et al. Sol-gel autocombustion synthesis of metals and metal alloys [J]. Angewandte Chemie International Edition,2009,48(45):8529.
35 Xu L Q, Chen L Y, Huang H F, et al. A novel sol-gel process to facilely synthesize Ni3Fe nanoalloy nanoparticles supported with carbon and silica [J]. Journal of Alloys & Compounds,2014,593(6):93.
36 Xu L, Huang H, Tang S, et al. Facile synthesis of nickel nanoparticles supported on carbon and silica matrix via a novel silica sol-gel process [J]. Journal of Sol-Gel Science and Technology,2014,69(1):130.
37 Liu Y G, Hu J H, Huang Z H, et al. Preparation of LiTaO3 nano-particles by a sol-gel route [J]. Journal of Sol-Gel Science and Technology,2011,58(3):664.
38 Zhang Y J, Yang Y T, Liu Y, et al. A novel approach to the synthesis of CoPt magnetic nanoparticles [J]. Journal of Physics D Applied Physics,2011,44(29):295003.
39 Petrova N, Todorovsky D, Angelova S, et al. Synthesis and characterization of cerium citric and tartaric complexes [J]. Journal of Alloys & Compounds,2008,454(1-2):491.
40 Guo K, Chen H H, Guo X, et al. Morphology investigation of yttrium aluminum garnet nano-powders prepared by a sol-gel combustion method [J]. Journal of Alloys & Compounds,2010,500(1):34.
[1] 陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
[2] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[3] 刘娟红, 安树好, 陈德平, 张月月. 融合石膏组分和微纳米结构“双基因”调控的铁尾矿粉无熟料固结体力学性能[J]. 材料导报, 2024, 38(21): 23010110-10.
[4] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[5] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[6] 李伟, 王洪利, 刘学琰, 范智禹, 吴怡逸, 聂登攀, 陶文亮. 表面疏油Al2O3陶瓷膜的制备及表征[J]. 材料导报, 2024, 38(13): 22120002-6.
[7] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[8] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[9] 左夏华, 宋立健, 关昌峰, 阎华, 杨卫民, 安瑛. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 22050317-9.
[10] 盛友杰, 彭云川, 张含灵, 阎灿彬, 李杨, 马文智. SiO2纳米颗粒对环保型泡沫灭火剂稳定性的影响[J]. 材料导报, 2023, 37(18): 22050272-6.
[11] 段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
[12] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[13] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[14] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[15] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed