Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23010110-10    https://doi.org/10.11896/cldb.23010110
  无机非金属及其复合材料 |
融合石膏组分和微纳米结构“双基因”调控的铁尾矿粉无熟料固结体力学性能
刘娟红1,2,3,*, 安树好1, 陈德平1, 张月月1
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城镇化与城市安全研究院,北京 100083
3 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
Mechanical Properties of Clinker-free Consolidated Body of Iron Tailing Powders Regulated Synergistically by Gypsum Component and Micro-Nano Structure
LIU Juanhong1,2,3,*, AN Shuhao1, CHEN Deping1, ZHANG Yueyue1
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Research Institute of Urbanization and Urban Safety, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 11486KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究超细铁尾矿粉颗粒表面非晶态SiO2和Al2O3在石灰-石膏体系中的水化固化机理及调控因素,本工作考察了石膏掺量和铁尾矿粉中微纳米级颗粒含量之间的匹配对固结体强度的影响,利用XRD、TG-DSC、SEM和化学滴定法测试分析了固结体试样中水化产物的种类、形貌及含量的变化,研究了这些变化对固结体强度的影响及作用机理。结果表明,超细铁尾矿粉中小于1.096 μm的微纳米颗粒含量显著影响着铁尾矿粉在碱溶液中Si和Al元素的溶出行为,固结体强度随着这些微纳米颗粒含量的增加而提高。固结体中的主要水化产物是铝掺杂的水化硅酸钙(C-(A)-S-H)和钙矾石(AFt)。石膏掺量与铁尾矿粉中微纳米颗粒含量的最佳匹配值对固结体的强度具有显著影响,并且微纳米颗粒含量越高,对应的石膏最佳掺量越大。石膏组分保证了AFt的生成和稳定,同时也加速了铁尾矿粉颗粒表面非晶态成分的水化。本工作探明了固结材料中最佳石膏掺量与微纳米铁尾矿粉颗粒含量的关联关系及其机理,证实了微纳米级颗粒是无熟料固结体结构中的基本活性单元,石膏的掺入对微纳米颗粒的水化起到调控作用,水化后的微纳米颗粒演变为固结体的基本结构单元,这种组分和结构的“双基因”调控机制影响着固结体的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘娟红
安树好
陈德平
张月月
关键词:  超细铁尾矿粉  微纳米颗粒  石膏掺量  无熟料固结体  力学性能  调控机制    
Abstract: In order to explore the hydration and solidification mechanism and regulation factors of amorphous SiO2 and Al2O3 on particle surfaces of ultrafine iron tailing powder in lime-gypsum system, this work investigated the influence of the matching between the gypsum's doping amount and the iron tailing powders' micro-nano particle content on strength of the consolidated body. The evolution of chemical species, morphologies and contents of hydration products in several samples of consolidated body of were tested and analyzed by means of XRD, TG-DSC, SEM and chemical titration, and their impacts on strength of the consolidated body and the corresponding underlying mechanisms were studied. The results showed that the content of micro-nano particles smaller than 1.096 μm in the ultra-fine iron tailing powder significantly affected the dissolution behavior of SiO2 and Al2O3 components in the alkaline solution, and the increase of this content resulted in improved strength of the consolidated body. The main hydration products in the consolidated body were aluminum-doped calcium silicate hydrate (C-(A)-S-H) and ettringite (AFt). The best matching value between gypsum content and micro-nano iron tailings powder content had a significant impact on the strength of the consolidated body, and the required optimal amount of gypsum addition varied directly proportional with the content of micro-nano particles. Gypsum component not only ensured the formation and stability of AFt, but also accelerated the hydration of amorphous components on surfaces of tailing powder particles. This study clarified the relationship between the optimal gypsum doping amount and micro-nano tailing particle content in the consolidated material and its underlying origins. It could be confirmed that the micro-nano particles are the basic active units in the structure of the non-clinker consolidated body. The hydration process of these micro-nano particles of tailing powders is regulated by the addition of gypsum, and makes the micro-nano particles become the basic structural units of the consolidated body. This ‘dual-gene’ regulation mechanism of both composition and structure affects the mechanical properties of the consolidated body.
Key words:  ultrafine iron tailing powder    micro-nano particles    gypsum content    non-clinker consolidated body    mechanical properties    regulatory mechanism
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TD926.4  
基金资助: 国家重点研发计划(2022YFB2602605)
通讯作者:  *刘娟红,北京科技大学土木与资源工程学院教授、博士研究生导师。1989年毕业于武汉工业大学硅酸盐工程专业获学士学位,1998年获武汉工业大学建筑材料硕士学位,2008年获中国矿业大学(北京)矿物材料工程专业博士学位。长期从事现代混凝土技术、固体废弃物在水泥基材料中的高效利用等方面的研究应用工作。主持国家自然科学重点基金、面上基金,承担国家重点基础研究发展计划、省部级科技计划项目和横向科研课题等60余项。获省部级科技进步一等奖2项、二等奖1项、三等奖4项。获国家发明专利20余项。在公开刊物上发表文章160余篇,被SCI、EI收录60余篇。出版学术专著《绿色高性能混凝土技术与工程应用》、《活性粉末混凝土》、《固体废弃物与低碳混凝土》等。主编教材《土木工程材料》。主要科研成果应用于北京市奥运工程地铁工程混凝土裂缝控制,广东省、浙江省道路桥梁工程,新疆、宁夏等自治区重点工程,大唐国际发电有限公司粉煤灰品质提升等方面。juanhong1966@hotmail.com   
引用本文:    
刘娟红, 安树好, 陈德平, 张月月. 融合石膏组分和微纳米结构“双基因”调控的铁尾矿粉无熟料固结体力学性能[J]. 材料导报, 2024, 38(21): 23010110-10.
LIU Juanhong, AN Shuhao, CHEN Deping, ZHANG Yueyue. Mechanical Properties of Clinker-free Consolidated Body of Iron Tailing Powders Regulated Synergistically by Gypsum Component and Micro-Nano Structure. Materials Reports, 2024, 38(21): 23010110-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010110  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23010110
1 Wang H J, Wang Y J, Li W C, et al.National report on conservation and comprehensive utilization of mineral resources(2019), Geological Publi-shing House, China, 2020, pp.19 (in Chinese).
王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019),地质出版社, 2020, pp.19.
2 Lu C, Chen H Y, Fu L J, et al.Materials Reports, 2021, 35(5), 5011 (in Chinese).
路畅, 陈洪运, 傅梁杰, 等. 材料导报, 2021, 35(5), 5011.
3 Pan D A, Lu H Y, Liu X M, et al.Bulletin of the Chinese Ceramic Society, 2019, 38(10), 3162 (in Chinese).
潘德安, 逯海洋, 刘晓敏, 等. 硅酸盐通报, 2019, 38(10), 3162.
4 Chen S C,Gao M Y, Lin W T, et al. Construction and Building Mate-rials, 2022, 329, 127150.
5 Young G, Yang M.Construction and Building Materials, 2019, 197(10), 152.
6 Cheng Y H, Huang F, Li W C, et al.Construction and Building Mate-rials, 2016, 118, 164.
7 Peng Y J, Liu Z M, Liu X X, et al. Construction and Building Materials, 2022, 322, 126515.
8 Ruan Z E, Wu A X, Wang Y M. Chinese Journal of Engineering, 2022, 44(4), 496 (in Chinese).
阮竹恩, 吴爱祥, 王贻明, 等. 工程科学学报, 2022, 44(4), 496.
9 Cheng H Y, Wu A X, Wu S C, et al.Chinese Journal of Engineering, 2022, 44(1), 11 (in Chinese).
程海勇, 吴爱祥, 吴顺川, 等.工程科学学报, 2022, 44 (1), 11.
10 Zheng Y C, Ni W, Xu L, et al. Journal of University of Science and Technology Beijing, 2010, 32(4), 504. (in Chinese).
郑永超, 倪文, 徐丽, 等. 北京科技大学学报, 2010, 32(4), 504.
11 Piao C A, Wang D M, Zhang L R, et al. Journal of Basic Science and Engineering, 2016, 24(6), 1100 (in Chinese).
朴春爱, 王栋民, 张力冉, 等. 应用基础与工程科学学报, 2016, 24(6), 1100.
12 An S H, Liu J H, Zhang Y Y, et al. Journal of Building Materials, 2023, 26(2), 172 (in Chinese).
安树好, 刘娟红, 张月月, 等. 建筑材料学报, 2023, 26(2), 172.
13 Liu J H,An S H, Wu A X, et al. Chinese Journal of Engineering, 2022, 44(12), 1999 (in Chinese).
刘娟红, 安树好, 吴爱祥, 等.工程科学学报, 2022, 44(12), 1999.
14 Liu Q Y, Liu J H, Zhang Y Y, et al. Metal Mine, 2021(10), 51 (in Chinese).
刘倩影, 刘娟红, 张月月, 等. 金属矿山, 2021(10), 51.
15 Wang Y, Zhu Y M, Xie R Q, et al. Metal Mine, 2020(6), 81 (in Chinese).
王燕, 朱一民, 谢瑞琦, 等. 金属矿山, 2020(6), 81.
16 Lu X C, Yin L, Zhao L Z, et al.Journal of the Chinese Ceramic Society, 2003, 31(1), 60 (in Chinese).
陆现彩, 尹琳, 赵连泽, 等. 硅酸盐学报, 2003, 31(1), 60.
17 Chen D, Chen Z H.Mechanochemical, Chemical Industry Press, 2008, pp.72 (in Chinese).
陈鼎, 陈振华. 机械力化学, 化学工业出版社, 2008, pp.72.
18 Yang N R.Non-tradition cementitious materials chemistry, Wuhan University of Technology Press, 2018, pp.174(in Chinese).
杨南如. 非传统胶凝材料化学, 武汉理工大学出版社, 2018, pp.174.
19 Han J G, Yan P Y,Hou W H. Journal of the Chinese Ceramic Society, 2016, 44(11), 1543 (in Chinese).
韩建国, 阎培渝, 侯维红. 硅酸盐学报, 2016, 44(11), 1543.
20 Yang J, Zhang G Z, Ding Q J, et al.Journal of Building Materials, 2022, 25(6), 565 (in Chinese).
杨军, 张高展, 丁庆军, 等. 建筑材料学报, 2022, 25(6), 565.
21 Lu L N, He Y J, He M Q, et al.Journal of the Chinese Ceramic Society, 2017, 45(8), 1096 (in Chinese).
吕林女, 何永佳, 何满倩, 等. 硅酸盐学报, 2017, 45(8), 1096.
22 Shi T, Yao Y M.Advances in Cement Research, 2015, 27(9), 497.
23 Liang W Q.Engineering Journal of Wuhan University, 1994, 27(5), 492 (in Chinese).
24 梁文泉. 武汉大学学报:工学版, 1994, 27(5), 492.
Hao B H, Mao J F, Zheng S L, et al. Journal of Wuhan University of Technology, 1998(1), 70 (in Chinese).
25 郝保红, 毛钜凡, 郑水林, 等. 武汉工业大学学报, 1998(1), 70.
Lawrence P, Cyr M,Ringot E. Cement and Concrete Research, 2005, 35(6), 1019.
26 Zhang C, Li K F, Wang J J. Materials Reports, 2023, 37(2), 54 (in Chinese).
张弛, 李克非, 王俊杰. 材料导报, 2023, 37(2), 54.
27 Pan X Y, Zhang G X, Zhang Y Q, et al.Journal of Building Materials, 2017, 20(2), 255 (in Chinese).
潘晓燕, 张广兴, 张晏清, 等. 建筑材料学报, 2017, 20(2), 255.
28 Chen W,Brouwers H J H, Shui Z H. Journal of Wuhan University of Technology, 2010, 32(11), 1 (in Chinese).
陈伟, Brouwers H J H, 水中和. 武汉理工大学学报, 2010, 32(11), 1.
29 Song X L, Huang X H.Fundamentals of inorganic materials science, Chemical Industry Press, 2020, pp.398 (in Chinese).
宋晓岚, 黄学辉. 无机材料科学基础, 化学工业出版社, 2020, pp.398.
30 Taylor H F W.Cement Chemistry (2nd Edition), Thomas Telford Publishing, 1997, pp.180.
31 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569 (in Chinese).
钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569.
32 Bizzozero J, Gosselin C, Scrivener K L. Cement and Concrete Research, 2014, 56(2), 190.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed