Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23010078-8    https://doi.org/10.11896/cldb.23010078
  高分子与聚合物基复合材料 |
聚合物分散液晶器件概述、发展趋势及应用研究进展
吴菁1, 李佳2, 黄金华2, 宋伟杰2, 谭瑞琴1,*
1 宁波大学信息科学与工程学院,浙江 宁波 315211
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
Overview, Development Trend and Application Research Progress of Polymer Dispersed Liquid Crystal Devices
WU Jing1, LI Jia2, HUANG Jinhua2, SONG Weijie2, TAN Ruiqin1,*
1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, Zhejiang, China
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
下载:  全 文 ( PDF ) ( 5945KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文概述了聚合物分散液晶器件的基本结构、原理和制备方法,重点介绍了目前聚合物分散液晶器件(包括基于二色性染料的彩色器件以及基于柔性透明电极的柔性器件)的发展现状和趋势,总结了聚合物分散液晶在智能窗、防窥和传感器等方面的应用,最后对聚合物分散液晶器件色彩和柔性化方面的问题进行陈述,并对其研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴菁
李佳
黄金华
宋伟杰
谭瑞琴
关键词:  聚合物分散液晶  染料  颜色调控  柔性透明电极    
Abstract: This article provides an overview of the basic structure, principle and preparation methods of polymer dispersed liquid crystal (PDLC) devices. The current development status and trend of PDLC devices are highlighted, including color devices based on dichroic dyes and flexible devices based on flexible transparent electrodes. The applications of PDLC in smart windows, privacy protection and sensors are summarized. Finally,the challenges of color and flexibility of PDLC devices are described and research direction are prospected.
Key words:  polymer dispersed liquid crystal    dye    color modulation    flexible transparent electrodes
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  O753+.2  
  TN104.3  
基金资助: 浙江省基础公益研究计划项目(LGG21F040001)
通讯作者:  *谭瑞琴,宁波大学信息科学与工程学院研究员。目前主要从事半导体型光电功能纳米材料及相关器件、光电功能薄膜和柔性电子器件的制备及集成等相关方向的研究。主持承担国家自然科学基金、浙江省基础公益研究计划项目、浙江省钱江人才项目和宁波市自然科学基金项目等。已发表SCI收录论文100余篇,获得国家授权发明专利20余项。tanruiqin@nbu.edu.cn   
作者简介:  吴菁,2021年6月于新余学院获得工学学士学位。现为宁波大学信息科学与工程学院硕士研究生,主要研究方向为聚合物分散液晶及超薄金属透明导电膜。
引用本文:    
吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
WU Jing, LI Jia, HUANG Jinhua, SONG Weijie, TAN Ruiqin. Overview, Development Trend and Application Research Progress of Polymer Dispersed Liquid Crystal Devices. Materials Reports, 2024, 38(21): 23010078-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010078  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23010078
1 Hakemi H. Molecular Crystals and Liquid Crystals, 2019, 684(1), 7.
2 Jain A K, Deshmukh R R. In: Liquid Crystals and Display Technology, Ghamsari M S, Carlescu I, IntechOpen, UK, 2020, pp. 11.
3 Saeed M H, Zhang S, Cao Y, et al. Molecules, 2020, 25, 5510.
4 Jinqian L, Zhao Y, Gao H, et al. Liquid Crystals, 2022, 49(1), 29.
5 Choi Y, Kim C S, Jo S. Materials, 2018, 11(11), 2231.
6 Huang C Y, Lin S H. Polymers, 2021, 13(17), 2906.
7 Labeeb A M, Ibrahim S A, Ward A A, et al. Polymer Engineering & Science, 2020, 60(10), 2529.
8 Zhou L, He Z, Han C, et al. Liquid Crystals, 2019, 46(5), 718.
9 Li K, Wang J, Cai W, et al. Nano Letters, 2021, 21(17), 7183.
10 Pagidi S, Manda R, Bhattacharyya S S, et al. Advanced Materials Interfaces, 2019, 6(18), 1900841.
11 Li C, Chen M, Zhang L, et al. Liquid Crystals, 2020, 47(1), 106.
12 Chen M, Hu W, Liang X, et al. Polymer, 2017, 127, 1.
13 Li C, Chen M, Shen W, et al. Liquid Crystals, 2019, 46(11), 1718.
14 Chen C P, Kim D S, Jhun C G. Crystals, 2019, 9(7), 364.
15 Sheng M, Zhang L, West J L, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29728.
16 Kim M, Park K J, Seok S, et al. ACS Applied Materials & Interfaces, 2015, 7(32), 17904.
17 Ahmad F, Jamil M, Jeon Y J. Molecular Crystals and Liquid Crystals, 2017, 648(1), 88.
18 Kumar P, Sharma V, Chinky, et al. Molecular Crystals and Liquid Crystals, 2017, 647(1), 385.
19 Shi Z, Shao L, Wang F, et al. Liquid Crystals, 2018, 45(4), 579.
20 Katariya-Jain A, Deshmukh R R. Journal of Physics and Chemistry of So-lids, 2022, 160, 110363.
21 Deshmukh R R, Malik M K. Journal of Physics and Chemistry of Solids, 2013, 74(2), 215.
22 Sharma V, Kumar P. Physica B: Condensed Matter, 2017, 524, 118.
23 Sharma V, Kumar P, Sharma A, et al. Journal of Molecular Liquids, 2017, 233, 122.
24 Önsal G, Kocakülah G, Kahyaoğlu A, et al. Journal of Molecular Li-quids, 2019, 284, 607.
25 Li H H, Wang Y T, Wang Y, et al. Journal of Zhejiang University-Science B, 2019, 20(6), 528.
26 Kumar P, Sharma V, Jaggi C, et al. Liquid Crystals, 2017, 44(4), 757.
27 Zhang L, Liu Y, Shi Z, et al. Liquid Crystals, 2020, 47(5), 658.
28 Choi S H, Kim J A, Heo G S, et al. Journal of Molecular Liquids, 2022, 363, 119821.
29 Linnet J, Walther A R, Wolff C, et al. Optical Materials Express, 2018, 8(7), 1733.
30 Kim D H, Kim J H, Lee H K, et al. Journal of Materials Research, 2015, 30(10), 1593.
31 Sun K, Zhang S, Li P, et al. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438.
32 Pang S, Hernandez Y, Feng X, et al. Advanced Materials, 2011, 23(25), 2779.
33 Hecht D S, Heintz A M, Lee R, et al. Nanotechnology, 2011, 22(7), 075201.
34 Hu L, Wu H, Cui Y. MRS Bulletin, 2011, 36(10), 760.
35 Rathmell A R, Wiley B J. Advanced Materials, 2011, 23(41), 4798.
36 Liu C H, Yu X. Nanoscale Research Letters, 2011, 6(1), 1.
37 Zhang L, Yang K, Chen R, et al. Advanced Electronic Materials, 2020, 6(1), 1900648.
38 Wang C, Sun K, Fu J, et al. Advanced Sustainable Systems, 2018, 2(12), 1800085.
39 Chen R, Sun K, Zhang Q, et al. IScience, 2019, 12, 66.
40 Park J Y, Kim H K. RSC Advances, 2018, 8(64), 36549.
41 Raman V, Lee J E, Kim H K. Journal of Alloys and Compounds, 2022, 903, 163799.
42 Li P, Li H, Wang R, et al. ACS Applied Electronic Materials, 2021, 3(5), 2372.
43 Kim I C, Kim T H, Lee S H, et al. Scientific Reports, 2018, 8(1), 1.
44 Yu S, Zhang W, Li L, et al. Thin Solid Films, 2014, 552, 150.
45 Sahu D R, Lin S Y, Huang J L. Applied Surface Science, 2006, 252(20), 7509.
46 Dhar A, Alford T L. Journal of Applied Physics, 2012, 112(10), 103113.
47 Makha M, Cattin L, Lare Y, et al. Applied Physics Letters, 2012, 101(23), 233307.
48 Huang J, Li J, Xu J, et al. Solar Energy, 2019, 188, 857.
49 Chiou C C, Hsu F H. Optics Express, 2019, 27(12), 16911.
50 Kamal W, Li M, Lin J D, et al. Advanced Optical Materials, 2022, 10(3), 2101748.
51 Kumar S, Hong H, Choi W, et al. RSC Advances, 2019, 9(22), 12645.
52 Song M, Seo J, Kim H, et al. Scientific Reports, 2017, 7(1), 2630.
53 He Z, Shen W, Yu P, et al. Liquid Crystals, 2022, 49(1), 59.
[1] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[2] 冒海燕, 朱淼, 朱雪峰, 郭子怡, 廖成成, 何雪梅, 宋晓蕾. 基于刚果红的高分子染料制备及pH响应变色性能[J]. 材料导报, 2023, 37(9): 21040018-6.
[3] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[4] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[5] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[6] 杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
[7] 裴烈飞, 张香云, 袁子洲. 非晶态合金在废水处理中的催化性能[J]. 材料导报, 2022, 36(2): 20080033-9.
[8] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[9] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[10] 袁清堂, 于艳敏, 宋旭锋. 基于YD2-o-C8的高效卟啉染料敏化剂的研究进展[J]. 材料导报, 2021, 35(9): 9210-9217.
[11] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[12] 胡耀强, 房得珍, 叶秀深, 张慧芳, 刘海宁, 吴志坚. 西瓜皮基生物质碳气凝胶的制备及对染料的吸附[J]. 材料导报, 2021, 35(11): 11007-11012.
[13] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[14] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[15] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed