Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21010229-8    https://doi.org/10.11896/cldb.21010229
  高分子与聚合物基复合材料 |
淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化
易昌鸿1, 胡钢2, 祝柏林1, 陈红祥2, 吴隽1, 顾华志1
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉科技大学化学与化工学院,武汉 430081
Thermosetting Epoxy-based Polymer Dispersed Liquid Crystal (PDLC) Film Prepared by Quenching Process and Optimization of Their Optical Switching Properties
YI Changhong1, HU Gang2, ZHU Bailin1, CHEN Hongxiang2, WU Jun1, GU Huazhi1
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 11788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物分散液晶(PDLC)膜是液晶(LC)微滴分布在聚合物网络结构中形成的一种通过施加电压实现雾化态与透明态转换的材料,可应用于智能调光玻璃等领域。以双酚A环氧树脂(EP)与两种不同分子量的聚醚二胺(D400和D2000)反应生成的交联聚合物作为PDLC膜的基体,在采用淬火工艺的基础上,研究了LC浓度、固化温度和固化时间以及EP、D400、D2000配比对PDLC样品的关态与开态透光率(ToffTon)、雾度及驱动和饱和电压(VthVsat)的影响,同时用偏光显微镜观察了LC微滴的尺寸与分布密度。结果表明:当LC浓度为38%(质量分数),固化温度和固化时间分别为100 ℃、2 h,EP、D400、D2000物质的量比为4.4∶1.75∶1时,PDLC膜的综合性能最优,即:Toff为7.05%,Ton为66.6%,Vth为17 V,Vsat为33 V,关态雾度为90%,加60 V电压的开态雾度为15.6%。另外,分析了PDLC膜的调光性能与其LC微滴大小、分布及树脂网络结构致密度的关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易昌鸿
胡钢
祝柏林
陈红祥
吴隽
顾华志
关键词:  聚合物分散液晶膜  环氧树脂  热固化  淬火工艺  调光性能    
Abstract: Polymer-dispersed liquid crystal (PDLC) film, which is formed by dispersing liquid crystal (LC) droplets into a polymer network structure, is a kind of material that can realize the conversion between the opaque and the transparent state by exerting a voltage. It can be widely used in fields such as smart switchable glass. In this work, the crosslinking reaction products of bisphenol A epoxy resin (EP) and two polyether dia-mines with different molecular weights (D400 and D2000) were used as the PDLC matrix. Based on the quenching process, the effects of LC concentration, curing temperature and time, and n(EP)∶n(D400)∶n(D2000) on the transmittance (Toff and Ton) and haze under off-state and on-state as well as threshold and saturation voltages (Vth and Vsat) of PDLC samples were investigated. At the same time, the size and distribution density of the LC droplets were observed by polarizing microscope. The results show that the PDLC film with best overall performance is obtained at the LC concentration of 38 wt%, the curing temperature of 100 ℃, the curing time of 2 h and the n(EP)∶n(D400)∶n(D2000) of 4.4∶1.75∶1; namely, PDLC film shows Toff of 7.05%, Ton of 66.6%, off-state haze of 90%, on-state (60 V) haze of 15.6%, Vth of 17 V and Vsat of 33 V. In addition, the effects of size and distribution of LC droplet as well as compactness of resin network structure on the optical switching performance of PDLC film were also analyzed.
Key words:  polymer dispersed liquid crystal (PDLC) film    epoxy resin    heat curing    quenching process    optical switching properties
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TN27  
基金资助: 国家自然科学基金(50902105)
通讯作者:  blzhu@wust.edu.cn   
作者简介:  易昌鸿,1995年生,2018年于江西理工大学获得工学学士学位,2021年于武汉科技大学获得工学硕士学位。主要研究方向为聚合物分散液晶调光膜与透明导电薄膜。
祝柏林,1977年生,1998年于洛阳工学院获工学学士学位,2003年于华中科技大学获材料学专业博士学位。目前为武汉科技大学材料与冶金学院教授,主要从事透明导电薄膜的制备与应用以及有机-无机复合材料的研究。
引用本文:    
易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
YI Changhong, HU Gang, ZHU Bailin, CHEN Hongxiang, WU Jun, GU Huazhi. Thermosetting Epoxy-based Polymer Dispersed Liquid Crystal (PDLC) Film Prepared by Quenching Process and Optimization of Their Optical Switching Properties. Materials Reports, 2022, 36(8): 21010229-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010229  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21010229
1 Doane J W, Golemme A, West J L, et al. Molecular Crystals and Liquid Crystals,1988,165,511.
2 Deshmukh R R, Jain A K. Liquid Crystals,2016,43,256.
3 Drzaic P S. Journal of Applied Physics,1986,60,2142.
4 Macchione M, De Filpo G, Nicoletta F P, et al. Liquid Crystals,2005,32,315.
5 Li X Y, Cao F M, Sun Y F. Laser & Optoelectron Ics Progress,2014,51(2),196(in Chinese).
李雪莹,曹峰梅,孙云峰.激光与光电子学进展,2014,51(2),196.
6 Ramanitra H, Chanclou P, Dupont L, et al. Optical Engineering,2004,43,57.
7 Park S J, Lee J R. Journal of Colloid and Interface Science,1999,219,178.
8 Ozturk E, Ocak H, Cakar F, et al. Journal of Molecular Liquids,2018,265,24.
9 Wang D, Zhang L, Xing Y, et al. Liquid Crystals,2015,42,1689.
10 Shen W B, Wang L, Zhong T J, et al. Polymer,2019,160,53.
11 Shen W B, Wang L, Chen G, et al. Polymer,2019,167,67.
12 Zhang T, Kashima M, Zhang M, et al. RSC Advances,2012,2,2144.
13 Hakemi H. Molecular Crystals and Liquid Crystals,2019,681,12.
14 Kashima M, Cao H, Liu H J, et al. Liquid Crystals,2010,37,339.
15 Li H, Yang F F, Peng J, et al. Materials Science,2021,27,8.
16 Shi Z Q, Wang Y, Wang Y H. Liquid Crystals,2018,45,1746.
17 Meng Q Y, Cao H, Kashima M, et al. Liquid Crystals,2010,37,189.
18 Hu G, Chen H X, Liu Z Q, et al. Liquid Crystals,2020,47,1582.
19 Zhang L, Liu Y W, Shi Z Q, et al. Liquid Crystals,2020,47,658.
20 Shao L S, Zhang Y L, Liu C H, et al. Liquid Crystals,2012,39,1458.
21 Liang X, Chen M, Guo S M, et al. Polymer,2018,149,164.
22 Ma H P, Zhou L, Han C, et al. Liquid Crystals,2019,46,138.
23 Kizhakidathazhath R, Nishikawa H, Okumura Y, et al. Polymers,2020,12,1625.
24 Ma L P, Xie C, Ma L L, et al. Chinese Journal of Liquid Crystals and Displays,2013,28(6),828(in Chinese).
马利鹏,谢川,马丽露丝,等.液晶与显示,2013,28(6),828.
25 He T Y, Yang B, Zhang L, et al. Liquid Crystals,2020,47,1624.
26 Kim Y, Jung D, Jeong S, et al. Current Applied Physics,2015,15,292.
27 Li J S, Wang J, Zhang H H, et al. New Chemical Materials,2014,42(2),66(in Chinese).
李军升,王静,张宏皓,等.化工新型材料,2014,42(2),66.
28 Yang J, Zhang Y, Zhang C H, et al. Liquid Crystals,2018,45,1726.
29 NastaŻ E, urańska E, Mucha M. Journal of Applied Polymer Science,1999,71,455.
30 An Y J, Guo X L, Zhang S H, et al. Advanced Materials Research,2014,1015,89.
[1] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[2] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[3] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[4] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[5] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[6] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[7] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[8] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[9] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[10] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[11] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[12] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[13] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[14] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[15] 杨海冬, 王德志, 李洪峰, 冯浩, 肖万宝, 赵立伟, 曲春艳. 含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响[J]. 材料导报, 2020, 34(Z2): 580-585.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed