Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2145-2150    https://doi.org/10.11896/cldb.19120004
  高分子与聚合物基复合材料 |
环氧/酸酐体系网络结构对形状记忆性能的影响
马甜, 贺鹏飞, 李文晓
同济大学航空航天与力学学院,上海 200092
Shape Memory Properties of Epoxy/Anhydride Systems with Different Network Structures
MA Tian, HE Pengfei, LI Wenxiao
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 4067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以环氧/酸酐(双酚A型缩水甘油醚/甲基纳迪克酸酐,DGEBA/MNA)类形状记忆复合材料基体为研究对象,探讨了无定形树脂基体的网络结构与其形状记忆性能之间的关系。以2,4,6-三(二甲胺基甲基)苯酚(DMP-30)和异辛酸锌作为DGEBA/MNA体系的促进剂,调节基体配方获得具有不同网络结构的环氧体系。通过对固化物皂化前后的胶化量测定确定了三种网络结构,即酯网络、醚网络和酯-醚混合网络,并采用动态热机械分析(DMA)测量各体系的动态热力学性能。以形状回复率、形状回复时间和形状回复力为指标,对三种不同网络结构树脂基碳纤维复合材料进行形状记忆折叠-展开测试。结果表明,三种网络结构均具有较高的形状回复率,且反复的热力学循环对三种网络结构形状回复率的影响均很小;酯网络结构、醚网络结构和酯-醚混合网络结构的形状回复时间依次延长,而形状回复力逐渐降低。同时,在较低的回复程度下,三种网络结构的形状回复力均随折叠-展开次数的增加而下降,而随回复程度的增加,回复力的下降幅度逐渐降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马甜
贺鹏飞
李文晓
关键词:  形状记忆性能  网络结构  环氧树脂  酸酐    
Abstract: To explore the relationship between network structures and shape memory properties of amorphous matrix resin, epoxy/anhydride (bisphenol A diglycidyl ether/methyl Nadie anhydride, DGEBA/MNA) matrix systems of shape memory composites were studied. The tris (dimethy-laminomethyl) phenol (DMP-30) and zinc octoate were used as accelerators of DGEBA/MNA system to acquire different network structures by adjusting the matrix formula. Three kinds of network structures of cured samples, namely ester network, ether network and ester-ether mixed network, were determined by gel measurement before and after saponification. The dynamic thermomechanical properties of each system were tes-ted by dynamic mechanical analysis (DMA). Shape recovery ratio, shape recovery time and shape recovery force were used as indexes to cha-racterize the shape memory properties of the corresponding carbon fiber reinforced composites. The results show that the three kinds of network structures all have high shape recovery ratio, and the repeated thermodynamic cycle has little effect on shape recovery ratio of the three network structures; the shape recovery time of ester network, ether network and ester-ether mixed network increases in turn, while the shape recovery force decreases gradually. At the same time, at a lower recovery degree, the shape recovery force of the three kinds of network structures decreases with the increase of the fold-deploy times, while with the increase of recovery degree, the decline amplitude of the recovery force decreases gradually.
Key words:  shape memory properties    network structure    epoxy    anhydride
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB332  
通讯作者:  wenxiaoli@tongji.edu.cn   
作者简介:  马甜,2017年6月毕业于同济大学,获得工学学士学位。2017年9月至今就读于同济大学,攻读工学硕士学位。主要从事形状记忆聚合物及其复合材料领域的研究。
李文晓,同济大学航空航天与力学学院副教授、硕士研究生导师。主要从事形状记忆聚合物基复合材料与复合材料泡沫夹层结构的设计、制备与性能的研究。
引用本文:    
马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
MA Tian, HE Pengfei, LI Wenxiao. Shape Memory Properties of Epoxy/Anhydride Systems with Different Network Structures. Materials Reports, 2021, 35(2): 2145-2150.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120004  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2145
1 Leng J S, Xin L, Liu Y J, et al. Progress in Materials Science, 2011, 56(7), 1077.
2 József K K, Sándor K. Polymers, 2018, 10(1), 34.
3 Pang J G, Wang G, Qu M, et al. Journal of Material Engineering, 2018, 46(5), 64.
4 Liu Y Y, Du H Y, Liu L W, et al. Smart Materials & Structures, 2014, 23(2), 023001.
5 Xie F, Huang L, Leng J, et al. Journal of Intelligent Material Systems & Structures, 2016, 27(18), 2433.
6 Ren T N, Zhu G M, Nie J. Journal of Aeronautical Materials, 2018, 38(4), 47(in Chinese).
任天宁, 朱光明, 聂晶. 航空材料学报, 2018, 38(4), 47.
7 Tan Q, Liu L W, Li F F, et al. Journal of Intelligent Material Systems and Structures, 2016,28(12), 1627.
8 Chen Y T, Li W X, Jin S Q. Materials Reports B: Research Papers, 2017, 31(10), 14(in Chinese).
陈毓焘, 李文晓, 金世奇. 材料导报:研究篇 2017,31(10), 14.
9 Chen Q F, Li W X, Fang G Q, et al. Engineering Plastics Application, 2014(4), 40(in Chinese).
陈巧峰, 李文晓, 房光强, 等. 工程塑料应用, 2014(4), 40.
10 Fejos M, Karger-kocsis J, Grishchuk S. Journal of Reinforced Plastics & Composites, 2013, 32(24), 1879.
11 Rahman A A, Ikeda T, Senba A. Fibers & Polymers, 2017, 18(5), 979.
12 Liu H C, Li J B, Gao X X, et al. Journal of Polymer Research, 2018, 25(2), 24.
13 Zhao Z, Gu Y Y, Chao D M, et al. European Polymer Journal, 2019, 116, 336.
14 Tan X C, Zou Q, Huang Y Z, et al. Industrial & Engineering Chemistry Research, 2018, 57(23), 7898.
15 Rao K V, Rao S, Revathi A, et al. Indian Journal of Chemical Technology, 2018, 25(1), 68.
16 Fu S Q, Zhu J P, Chen S J. Macromolecular Research, 2018, 26(11), 1035.
17 Wang D Z. Production and application of epoxy resin, Chemical Industry Press, China, 2001(in Chinese).
王德中. 环氧树脂生产与应用, 化学工业出版社, 2001.
18 Matějka L, Lövy J, Pokorny S, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 21(10), 2873.
19 Woo E M, Seferis J C. Journal of Applied Polymer Science, 2010, 40(7), 1237.
20 Fedoseev M S, Derzhavinskaya L F, Strel'nikov V N. Russian Journal of Applied Chemistry, 2010, 83(8), 1408.
21 Delor-jestin F, Drouin D, Cheval P Y, et al. Polymer Degradation & Stability, 2006, 91(6), 1247.
22 Musto P, Abbate M, Ragosta G, et al. Polymer, 2007, 48(13), 3703.
23 Amirova L R, Khamidullin O L, Andrianova K A, et al. Polymer Bulletin, 2018, 75(11), 5253.
24 Worzakowska M. Macromolecular Symposia, 2010, 296(1), 254.
25 Chen J S, Ober C K, Poliks M D, et al. Polymer, 2004, 45(6), 1939.
26 Kim N H, Yoon S, Jung K I, et al. Journal of Applied Polymer Science, DOI: 10.1002/app.47088.
27 Thomas V, Michel C, Macromolecules, 2018, 51(14), 5121.
28 Shimbo M, Nishitani N, Takahama T. Journal of Applied Polymer Science, 1984, 29(5), 1709.
29 Rousseau I A, Xie T. Proceedings of SPIE, DOI: 10.1117/12.815518.
[1] 杨海冬, 王德志, 李洪峰, 冯浩, 肖万宝, 赵立伟, 曲春艳. 含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响[J]. 材料导报, 2020, 34(Z2): 580-585.
[2] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[3] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[4] 侯桂香, 谢建强, 姚少巍, 韩卿. 环氧化修饰碳纳米管对邻甲酚醛环氧树脂性能的影响[J]. 材料导报, 2020, 34(20): 20165-20170.
[5] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[6] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[7] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[8] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[9] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[10] 王楠, 胡程耀, 郭世艳, 廖俊, 霍冀川. 多巴胺修饰氮化硼对环氧树脂复合材料性能的影响[J]. 材料导报, 2019, 33(22): 3837-3841.
[11] 冯潇,康海澜,杨凤,方庆红. 杜仲胶/环氧树脂防腐涂料的制备与性能[J]. 材料导报, 2019, 33(22): 3847-3852.
[12] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[13] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[14] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[15] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed