Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8179-8183    https://doi.org/10.11896/cldb.19010132
  高分子与聚合物基复合材料 |
γ辐照作用下GFRP电绝缘性能及其微观结构机理研究
郑莉芳1, 崔哲1, 王兆中1, 谢亚杰2, 岳丽娜3, 陈璇琪1
1 北京科技大学机械工程学院,北京 100083;
2 北京科技大学材料科学与工程学院,北京 100083;
3 华北科技学院环境工程学院,北京 101601
Study on Electrical Insulation Property and Microcosmic Mechanism of GFRP Under the Effect of γ Irradiation
ZHENG Lifang1, CUI Zhe1, WANG Zhaozhong1, XIE Yajie2, YUE Lina3, CHEN Xuanqi1
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3 School of Environmental Engineering, North China Institute of Science and Technology, Beijing 101601, China
下载:  全 文 ( PDF ) ( 3332KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 玻璃纤维增强塑料(GFRP)作为一种具有良好电绝缘性能、热绝缘性能和力学性能的复合材料,在高能物理和核物理实验中被用来制作支撑设备,而高能物理和核物理实验中往往会产生一定剂量的γ或中子辐照,进而改变GFRP的性能。为保证GFRP支撑设备在辐照条件下的安全运行,有必要对辐照前后GFRP的电绝缘性能进行研究。本研究通过导电性能测试仪、扫描电子显微镜、红外光谱和X射线光电子能谱研究了γ辐照前后GFRP电绝缘性能的变化规律,并从微观结构上揭示了引起材料电绝缘性能变迁的机理。结果表明:GFRP平均电阻率与辐照剂量之间具有明显的线性关系,在经20 kGy、100 kGy和200 kGy的γ辐照后,其平均电阻率由辐照前的8.16×1012 Ω·m分别提高到15.88×1012 Ω·m、23.13×1012 Ω·m和43.15×1012 Ω·m,辐照使GFRP的平均电阻率升高,电绝缘性增强。通过对GFRP微观结构进行研究,发现辐照后玻璃纤维表面出现裂纹,环氧树脂呈现碎片化趋势且有孔洞出现,二者之间的界面遭到破坏,分子键发生断裂,GFRP发生了氧化老化,这些均为GFRP电绝缘性能增强的重要原因。GFRP材料可以满足高能物理和核物理辐照环境下的高电绝缘性要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑莉芳
崔哲
王兆中
谢亚杰
岳丽娜
陈璇琪
关键词:  玻璃纤维增强塑料  电绝缘性  电阻率  γ辐照  环氧树脂    
Abstract: As composite materials, glass fiber reinforced plastics (GFRP) are used to make supporting equipment in high energy physics and nuclear physics experiments for its good electrical insulation property, thermal insulation property and mechanical performance. High-speed particles produce large amounts of γ or neutron irradiation in high energy physics and nuclear physics experiments. In order to ensure the stability of GFRP supporting equipment under the effect of irradiation, the electrical insulation property of GFRP must be researched under irradiation condition and the microstructure should be studied to reveal the microcosmic mechanism that causes the change of electrical insulation property. In this paper, the electrical insulation properties of GFRP were studied by electric-conductivity measure, scanning electron microscope, infrared spectrum and X-ray photoelectron spectroscopy. Then the microcosmic mechanism of irradiation damage was analyzed. The results showed that after γ irradiation of 20 kGy, 100 kGy and 200 kGy, the average electrical resistivity of GFRP increased from 8.16×1012 Ω·m to 15.88×1012 Ω·m, 23.13×1012 Ω·m, and 43.15×1012 Ω·m. There was a strong linear rule between the average resistivity and the dose of γ irradiation. It was found that there were some cracks on the surface of the glass fiber after γ irradiation. The epoxy resin became fragmenting and some pores appeared in it. The molecular bond was broken and the GFRP was oxidized. All these irradiation damages result in the rise of electrical resistivity. GFRP can meet high electrical insulation requirements in high energy physics and nuclear physics experiments under irradiation environments.
Key words:  glass fiber reinforced plastic    electrical insulation    electrical resistivity    γ irradiation    epoxy resin
               出版日期:  2020-04-25      发布日期:  2020-04-25
ZTFLH:  TB332  
  TL349  
基金资助: 国家自然科学基金(51605025);中央高校基本科研业务费(FRF-GF-17-B19);国家重点研发计划重点专项(2016YFC0802905)
通讯作者:  zhenglifang@ustb.edu.cn   
作者简介:  郑莉芳,北京科技大学教授,博士研究生导师。2000年于北京科技大学获得学士学位,2008年于北京科技大学获博士学位。中国复合材料学会,高级会员;中国复合材料学会青年工作委员会,委员。曾获教育部科技进步二等奖,国家重大科学工程——北京正负电子对撞机重大改造工程突出贡献奖,北京高校第八届青年教师教学基本功比赛论文一等奖,主持国家自然科学基金项目2项,主持中央高校基本科研业务费项目4项,参与国家重点研发计划重点专项1项,参与国家自然科学基金项目2项。先后发表EI/SCI论文20余篇。2013年入选北京高校青年英才计划。
崔哲,2017年6月于青岛理工大学获学士学位,2017年9月进入北京科技大学攻读硕士学位,主要从事辐照环境下材料的性能研究。
引用本文:    
郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
ZHENG Lifang, CUI Zhe, WANG Zhaozhong, XIE Yajie, YUE Lina, CHEN Xuanqi. Study on Electrical Insulation Property and Microcosmic Mechanism of GFRP Under the Effect of γ Irradiation. Materials Reports, 2020, 34(8): 8179-8183.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010132  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8179
1 Prokopec R, Humer K, Maix R K. Fusion Engineering & Design, 2009, 84(7),1544.
2 Yan S C, Liang K R. Guangdong Chemical Industry, 2014, 41(24), 72(in Chinese).
严世成, 梁克瑞. 广东化工, 2014, 41(24),72.
3 Zhang C. Chinese Physics C, 2009, 33(S2), 60.
4 Prokopec R, Humer K, Maix R K, et al. Fusion Engineering & Design, 2007, 82(5), 1508.
5 Mitchell N, Devred A, Libeyre P, et al. IEEE Transactions on Applied Superconductivity, 2012, 22(3), 4200809.
6 Chen Z X, Yang Y, Ruan M Q, et al. Chinese Physics C, 2017, 41(2),35.
7 Xin L. Bulletin of the Chinese Academy of Sciences, 2016, 30(3), 132.
8 Li J, Wu Z, Huang C, et al. Fusion Engineering & Design, 2014, 89(12), 3112.
9 Zhang Y W, Wang X, Tang M X, et al. Nuclear Physics Review, 2015, 32(s1), 69(in Chinese).
张艳文, 王绪, 唐美雄, 等. 原子核物理评论, 2015, 32(s1), 69.
10 Wang Q, Ma C, Yu Y, et al. Physics Procedia, 2014, 58(3), 236.
11 Prokopec R, Humer K, Maiv R K, et al, Phisics: Conference Series, 2006, 43, 739.
12 Prokopec R, Humer K, Weber H W, et al. Fusion Engineering and Design, 2001, 58-59,289.
13 Zheng L F, Ji Q, Wu P, et al. Nuclear Electronics & Detection Technology, 2007, 27(5), 847(in Chinese).
郑莉芳, 纪全, 吴平, 等. 核电子学与探测技术, 2007, 27(5), 847.
14 Chang L, Zhang Y, Liu Y J, et al. Thermosetting Resin, 2016, 31(1),10(in Chinese).
常乐, 张衍, 刘育建, 等. 热固性树脂, 2016, 31(1),10.
15 Wang G J, Sun Y N, Jiang W L, et al. Materials Science and Technology, 2017, 25(3), 46(in Chinese).
王国建, 孙耀宁, 蒋万乐, 等. 材料科学与工艺, 2017, 25(3), 46.
16 Liu R X, Zhao X J, Shang C Y, et al. Aerospace Materials and Technology, 2012, 42(2), 64(in Chinese).
刘瑞霞, 赵晓娟, 尚呈元, 等. 宇航材料工艺, 2012, 42(2), 64.
17 Shimamoto D, Tominaga Y, Hotta Y. Advanced Composite Materials, 2016, 25(sup1), 71.
18 Xu Z W. Effect of γ ray irradiation on the kidney sectional carbow fiber and composite interface. Ph.D. Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
徐志伟. γ射线辐照对腰形碳纤维及其复合材料界面的影响. 博士学位论文, 哈尔滨工业大学,2007.
19 Wang G J, Sun Y N, Jiang W L. Materials for Mechanical Engineering, 2018, 42(9),15(in Chinese).
王国建, 孙耀宁, 蒋万乐. 机械工程材料, 2018, 42(9),15.
20 Zhang Z Q, Wan Y Z. Fiber Reinforced Plastics/Composites, 2008(4), 11(in Chinese).
张宗强,万怡灶. 玻璃钢/复合材料, 2008(4), 11.
21 Qiu J, Zhang Z Q. Fiber Composites, 2003(3), 20(in Chinese).
邱军,张志谦. 纤维复合材料, 2003(3),20.
22 Song G. Damage effects and mechanism caused by space environments for high modulus carbon fiber/epoxy matrix composite. Master’s Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
宋刚. 高模碳纤维/环氧复合材料空间损伤效应研究. 硕士学位论文, 哈尔滨工业大学,2007.
23 Ma X Y. Effects of γ-ray irradiation on T700 carbon fiber and its compo-site interface performance. Master’s Thesis, Harbin Institute of Techno-logy, China, 2010(in Chinese).
马悦欣. γ-射线辐照对T700碳纤维及其复合材料界面性能的影响. 硕士学位论文,哈尔滨工业大学,2010.
24 Zhang J K, Ji Y F. Chinese Space Science and Technology, 1998(1),56(in Chinese).
张建可, 冀勇夫. 中国空间科学技术, 1998(1), 56.
25 Shan M J, Wang H B, Xu Z W, et al. Analytical Methods, 2018, 10, 496.
26 Sui X H, Xu Z W, Hu C S, et al. Composites Science and Technology, 2016, 130,46.
27 Feng T T, Liu L S, Ma T S, et al. Materials Review A:Review Papers, 2018, 32(4),1114(in Chinese).
冯婷婷, 刘梁森, 马天帅, 等. 材料导报:综述篇, 2018, 32(4),1114.
28 Qiao G H. Fiber Composite Materials, 2006, 23(1), 24(in Chinese).
乔光辉. 纤维复合材料, 2006, 23(1),24.
29 Zhao X M, Duan Y G, Liu X L, et al. Journal of Mechanical Enginee-ring, 2013, 49(11), 121(in Chinese).
赵新明, 段玉岗, 刘潇龙, 等. 机械工程学报, 2013, 49(11), 121.
30 Atta A M, Nassar I F, Bedawy H M. Reactive and Functional Polymers, 2007, 67(7), 617.
31 Xu Z W, Wu X Q, Liu L S, et al. Journal of Solid Rocket Technology, 2009(4), 456(in Chinese).
徐志伟, 吴晓青, 刘梁森, 等. 固体火箭技术, 2009(4), 456.
32 Zheng L F, Yue L N, Xu X H, et al. Acta Materiae Compositae Sinica, 2017, 34(10), 2240(in Chinese).
郑莉芳, 岳丽娜, 徐晓辉, 等. 复合材料学报, 2017, 34(10),2240.
33 Zheng L F, Qiao Z, Xu X, et al. Fusion Engineering and Design, 2017, 117, 24.
34 Zhou Z H, Chen S L, Yang J X, et al. Materials Review B:Research Papers, 2018, 32(5), 1592(in Chinese).
周娩红, 陈石林, 杨建校, 等. 材料导报:研究篇, 2018, 32(10), 1592.
35 Okabe S, Ueta G, Nojima K. IEEE Transactions on Dielectricsand Electrical Insulation, 2014, 21(3), 1260.
36 Zheng L F, Wang L N, Wang Z Z, et al. Acta Metallurgica Sinica, 2018, 31(1), 105.
37 Zheng L F, Yue L N, Xu X H, et al. Journal of Composite Materials, 2017, 34(10), 2240(in Chinese).
郑莉芳, 岳丽娜, 徐晓辉, 等. 复合材料学报, 2017, 34(10),2240.
38 Kang P H, Park J S, Nho Y C. Macromolecular Research, 2002, 10(6),332.
39 Zhang L H, et al. Radiation Physics Chemistry, 1993, 42, 125.
40 Liu L S, Wang H B, Zhao L H, et al. Polymer Composites, 2019, 40(s1), E832.
41 Jahan M, Wang C, Schwartz G, et al. Journal of Biomedical Materials Research, 1991, 25(8), 1005.
42 O’neill P, Birkinshaw C, Leahy J, et al.Polymer Degradation and Stability, 1999, 63(1), 31.
43 Ding Z M, Wu L Y, Fan H, et al. Thermosetting Resin, 2001, 16(5), 34(in Chinese).
丁著明, 吴良义, 范华, 等. 热固性树脂, 2001, 16(5), 34.
[1] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[2] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[3] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[4] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[5] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[6] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[7] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[8] 王楠, 胡程耀, 郭世艳, 廖俊, 霍冀川. 多巴胺修饰氮化硼对环氧树脂复合材料性能的影响[J]. 材料导报, 2019, 33(22): 3837-3841.
[9] 冯潇,康海澜,杨凤,方庆红. 杜仲胶/环氧树脂防腐涂料的制备与性能[J]. 材料导报, 2019, 33(22): 3847-3852.
[10] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[11] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[12] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[13] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[14] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[15] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed