Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 184-188    https://doi.org/10.11896/j.issn.1005-023X.2018.02.005
  物理   材料研究 |材料 |
La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究
李迪,陈清明,陈晓慧,李之昱,张亚林,张辉
昆明理工大学材料科学与工程学院,昆明 650093
Structure and Electrical Properties of La0.67Ca0.33-0.5xLixMnO3 Polycrystalline Ceramic
Di LI,Qingming CHEN,Xiaohui CHEN,Zhiyu LI,Yalin ZHANG,Hui ZHANG
College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 690093
下载:  全 文 ( PDF ) ( 2760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

用溶胶-凝胶法制备La0.67Ca0.33-0.5xLixMnO3(x=0.00,0.05,0.10,0.20)多晶陶瓷,用XRD分析多晶陶瓷的晶体结构,用SEM对多晶陶瓷的微观形貌进行分析,用标准四探针法测量电阻率-温度关系。结果表明,随着Li掺杂量的增加,所有样品均为斜方晶系,晶胞体积不断减小,金属-绝缘体转变温度(TP)降低,电阻率不断增加,电阻率温度系数(TCR)不断减小。低温区域(TP)的电阻率数据可以用ρ(T)= ρ02T 24.5T 4 . 5进行拟合;高温区域(T>TP)的电阻率数据可以用小极化子跃迁(SPH)模型和变程跳跃(VRH)模型进行拟合。整个温度区域(100300 K)可以使用渗透模型对电阻率进行拟合。从拟合数据可知极化子激活能Ea随Li掺杂量的增加而增大,这是由于Li的加入减小了Mn 3+-O 2--Mn 4+的键角,增大了有效带宽的间隙,因此也减弱了双交换作用,增大了电阻率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李迪
陈清明
陈晓慧
李之昱
张亚林
张辉
关键词:  La0.67Ca0.33-0.5xLixMnO3多晶  电阻率拟合  金属-绝缘体转变    
Abstract: 

A series of La0.67Ca0.33-0.5xLixMnO3 ceramic (x=0.00, 0.05, 0.10, 0.15, 0.20) were prepared by sol-gel technique. The crystal structures were analyzed by X-ray diffraction (XRD), the surface morphology and grain boundaries were investigated by scanning electron microscope (SEM), and the temperature dependence of the resistivity (R-T) of the bulk samples were studied by the standard four-probe method. It can be indexed with an orthorhombic structure for all of La0.67Ca0.33-0.5xLixMnO3 polycrystalline ceramics. The results showed that with the increase of the content of Li element, the unit cell volume decrease and the resistance increases. The insulator-metal transition temperature TP shifts to lower temperature and the temperature coefficient of resistivity (TCR) decrease continually. The data of resistivity on low-temperature (TP) have been fitted with the relation ρ(T)02T 24.5T 4 . 5, the high-temperature (T>TP) resistivity data were explained using small-polaron hopping (SPH) and variable-range hopping (VRH) models. The resistivity data in whole temperature range (100—300 K) can be fitted by percolation model. Polaron activation energy Ea is found to increases with increasing the contant of Li (x), which suggests that Li doping decrease bond angle of Mn 3+-O 2--Mn 4+, thereby the increase of effective band gap and the decrease of double exchange coupling, this is the reason of the increase of resistivity.

Key words:  La0.67Ca0.33-0.5xLixMnO3 polycrystalline    resistivity fitting    metal-insulator transition
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(11564021)
引用本文:    
李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
Di LI,Qingming CHEN,Xiaohui CHEN,Zhiyu LI,Yalin ZHANG,Hui ZHANG. Structure and Electrical Properties of La0.67Ca0.33-0.5xLixMnO3 Polycrystalline Ceramic. Materials Reports, 2018, 32(2): 184-188.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.005  或          http://www.mater-rep.com/CN/Y2018/V32/I2/184
x Lattice constant Cell
volume
V/?3
TP
K
TCR/(%·
K-1)
a/? b/? c/?
0.00 5.454 7.709 5.460 229.557 264 51.9
0.05 5.449 7.721 5.462 229.814 258 12.6
0.10 5.487 7.774 5.477 233.599 255 8.7
0.15 5.485 7.734 5.480 232.464 249 4.0
0.20 5.413 7.717 5.487 229.216 232 3.7
表1  La0.67Ca0.33-0.5xLixMnO3的晶格常数、Tp、TCR
图1  不同Li含量La0.67Ca0.33-0.5xLixMnO3(x=0.00,0.05,0.10,0.20)的XRD衍射谱
图2  La0.67Ca0.33-0.5xLixMnO3多晶陶瓷的SEM照片: (a)x=0.00,(b)x=0.10,(c)x=0.15,(d)x=0.20
图3  La0.67Ca0.33-0.5xLixMnO3多晶陶瓷的(a)温度-电阻率曲线,(b)温度-电阻系数曲线
x ρ0
10-4Ω·cm
ρ2/(10-9Ω·
cm·K-1)
ρ4.5/(10-13Ω·
cm·K-1)
R2
0.00 5.77 9.812 27 0. 521 11 0.996 9
0.05 46.00 308.573 3.216 02 0.999 9
0.10 73.60 462.456 19.894 8 0.999 5
0.15 105.00 195.023 20.760 5 0.999 3
0.20 131.58 6 422.78 354.654 0.999 9
表2  低温区域拟合式(1)的拟合参数(T<TP)
x Ea
meV
θD
K
J
meV
Jφ γP R2
0.00 83.68 559 27.63 1.16 3.47 0.999 6
0.05 129.03 533 26.65 1.03 5.62 0.999 9
0.10 167.06 540 26.92 0.97 7.18 0.999 4
0.15 164.44 526 26.38 0.97 7.26 0.999 8
0.20 154.13 499 25.37 0.97 7.17 0.999 2
表3  小极化子跳跃模型拟合式(2)、式(3)的拟合参数(T>θ/2)
图4  不同温度区间的电阻率拟合曲线:(a)T<TP,(b)TP<T<Tθ/2,(c)T>Tθ/2
x T0/K N(EF)/(eV-1·cm-3) R2
0.00 1 954 1.04×1024 0.985 2
0.05 3 284 6.19×1023 0.978 1
0.10 4 713 4.31×1023 0.977 2
0.15 3 166 6.42×1023 0.945 4
0.20 3 009 6.75×1023 0.956 8
表4  变程跳跃模型拟合式(5)的拟合参数(TP<T<θ/2)
x U0kB/104K Tc-mod/ K R2
0.00 6.16 258 0.998 9
0.05 3.27 253 0.999 8
0.10 1.76 251 0.997 4
0.15 1.45 249 0.998 7
0.20 0.74 232 0.994 2
表5  渗透模型拟合式(8)的拟合参数(100300 K)
图5  渗透模型的电阻率拟合曲线(100300 K)
1 1 Gennes P G D. Effect of double exchange in magnetic crystals[J]. Physical Review, 1960,118(1):141.
2 Attfield J P . ‘A’ cation control of perovskite properties[J]. Crystal Engineering, 2002,5(3-4):427.
3 Woodward P M, Vogt T, Cox D E , et al. Influence of cation size on the structural features of Ln1/2 A1/2MnO3 perovskites at room temperature[J]. Chemistry of Materials, 1998,10(11):3652.
4 Wang Z M, Ni G, Sang H , et al. The effect of average A-site cation radius on TC in perovskite manganites[J]. Journal of Magnetism and Magnetic Materials, 2001,234(2):213.
5 Kuberkar D G , et al. Grain morphology and size disorder effect on the transport and magnetotransport in sol-gel grown nanostructured manganites[J]. Applied Surface Science, 2012,285(22):9041.
6 Luo Junmei, Zhang Hui, Cui Qi , et al. Studies on (La0.67Ca0.33-MnO3)1-x∶Agx polycrystalline ceramics with high temperature coefficients of resistance[J]. Journal of Synthetic Crystal, 2015,44(8):2178(in Chinese).
7 罗均美, 张辉, 崔琦 , 等, 高电阻温度系数(La0.67Ca0.33MnO3)1-x∶Agx多晶陶瓷的研究[J]. 人工晶体学报, 2015,44(8):2178.
8 Fan J, Xu L, Zhang W , et al. Effect of A-site average radius and cation disorder on magnetism and electronic properties in manganite La0.6 A0.1Sr0.3MnO3(A=Sm, Dy, Er)[J]. Journal of Materials Science, 2015,50(5):2130.
9 Mnefgui S , et al. Electrical transport properties and transport-entropy correlations in La0.57Nd0.1Sr0.33MnO3 manganite[J]. Journal of Magnetism and Magnetic Materials, 2015,384(15):219.
10 Nakajima T, Ueda Y . Structures and electromagnetic properties of the A-site disordered Ba-based manganites R0.5Ba0.5MnO3 (R=Y and rare earth elements)[J]. Journal of Alloys and Compounds, 2014,383(1-2):135.
11 Kansara S B, Dhruv D, Joshi Z , et al. Structure and microstructure dependent transport and magnetic properties of sol-gel grown nanostructured La0.6Nd0.1Sr0.3MnO3 manganites: Role of oxygen[J]. Applied Surface Science, 2015,356(30):1272.
12 11 Voorhoeve R J H, Remeika J P, Trimble L E , et al. Perovskite-like La1-xKxMnO3 and related compounds: Solid state chemistry and the catalysis of the reduction of NO by CO and H2[J]. Journal of Solid State Chemistry, 1975,14(4):395.
13 Ahmed S A . Structural and electrical properties in La1-xLixMnO3[J]. Journal of Magnetism and Magnetic Materials, 2013,340:131.
14 Gao Xiang, Ma Ji, Zhang Hui . Structure and electrical properties of La0.75Ca0.25MnO3 polycrystalline ceramic and thin films[J]. Rare Metal Materials and Engineering, 2014,43(10):2415(in Chinese).
15 高翔, 马吉, 张辉 . La0.75Ca0.25MnO3多晶陶瓷与外延薄膜的结构和电学性能研究[J]. 稀有金属材料与工程, 2014,43(10):2415.
16 Yanapu K L, Samatham S S, Kumar D , et al. Effect of bismuth doping on the physical properties of La-Li-Mn-O manganite[J]. Applied Physics A, 2016,122(3):199.
17 Manjunatha S O, Rao A, Lin T Y , et al. Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35-x-BaxMnO3 (x=0, 0.25) manganites[J]. Journal of Alloys and Compounds, 2015,619:303.
18 Hcini S, Khadhraoui S, Zemni S , et al. Percolation model of the temperature dependence of resistivity in Pr0.67A0.33MnO3 (A= Ba or Sr) manganites[J]. Journal of Superconductivity and Novel Magne-tism, 2013,26(6):2181.
19 Navasery M, Halim S A, Dehzangi A , et al. Electrical properties and conduction mechanisms in La2/3Ca1/3MnO3 thin films prepared by pulsed laser deposition on different substrates[J]. Applied Phy-sics A, 2014,116(4):1661.
20 Shiffer P, Ramirez A P, Bao W , et al. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3[J]. Physical Review Letters, 1995,75(18):3336.
21 Vlakhov E S, Chakalov R A, Chakalov R I , et al. Influence of the substrate on growth and magnetoresistance of La0.7Ca0.3MnO3 thin films deposited by magnetron sputtering[J]. Journal of Applied Physics, 1998,83(4):2512.
22 Hcini S, Zemni S, Triki A , et al. Size mismatch, grain boundary and bandwidth effects on structural, magnetic and electrical properties of Pr0.67Ba0.33MnO3 and Pr0.67Sr0.33MnO3 perovskites[J]. Journal of Alloys and Compounds, 2011,509(5):2181.
23 Holstein T . Studies of polaron motion: Part Ⅱ. The “small” pola-ron[J]. Annals of Physics, 1959,8(3):343.
24 Lakshmi Y K, Reddy P V . Influence of sintering temperature and oxygen stoichiometry on electrical transport properties of La0.67-Na0.33MnO3 manganite[J]. Journal of Alloys and Compounds, 2009,470(1-2):67.
25 Millis A J, Shraiman B I, Mueller R . Dynamic Jahn-Teller effect and colossal magnetoresistance in La1-xSrxMnO3[J]. Physical Review Letters, 1996,75(1):175.
26 4 Mott N F, Davis E A . Electronic processes in non-crystalline mate-rials[J].Oxford University Press, 1979,25(12):55.
27 5 Banerjee A, Pal S, Chaudhuri B K . Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite La0.5Pb0.5Mn1-xCrxO3[J]. Journal of Chemical Physics, 2011,115(3):1550.
28 6 Manjunatha S O, Rao A, Awana V P S , et al. Investigation on magnetic, electrical and thermoelectric power of Bi-substituted La0.8-Ca0.2MnO3 manganites[J]. Journal of Magnetism and Magnetic Materials, 2015,394:130.
29 7 Oumezzine M, Kallel S, Pena O , et al. Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33-xMnO3 (x=0, 0.05, and 0.1) manganite[J]. Journal of Alloys and Compounds, 2014,582(3):640.
[1] 王洁,赵萍,吕冰海,张韬杰,黄晟,杭伟,袁巨龙. 用于功能陶瓷材料超精密平面加工的固结磨具的研究进展[J]. 材料导报, 2019, 33(17): 2873-2881.
[2] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[3] 王耿,傅邱云,张芦,施浩,田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[4] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[5] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[6] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[7] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[8] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[9] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[10] 王彦静, 刘宇, 崔素萍, 王志宏. 我国建筑陶瓷行业碳排放及减排潜力分析[J]. 材料导报, 2018, 32(22): 3967-3972.
[11] 厉佩贤, 袁鸽成, 陆正华, 李倩, 乐迎锋, 吴其光. 热处理对Bi2O3-B2O3-SiO2凝胶玻璃粉体结构与性能的影响[J]. 材料导报, 2018, 32(22): 4006-4010.
[12] 范兆如, 周守勇, 李梅生, 赵宜江, 邢卫红. 基于低品位凹凸棒石黏土的陶瓷膜支撑体制备[J]. 材料导报, 2018, 32(20): 3638-3644.
[13] 王春来,李钒,杨焜,刘长军,田丰. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19): 3348-3357.
[14] 王静, 王晓燕, 水中和, 冀志江, 赵春艳, 刘蕊蕊. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714.
[15] 兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪. 表面氧含量对高纯硅粉高温氮化行为的影响[J]. 材料导报, 2018, 32(16): 2719-2722.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed