Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2976-2988    https://doi.org/10.11896/cldb.18070231
  高分子与聚合物基复合材料 |
环氧树脂基体的原位增韧技术研究进展
魏波1,周金堂1,2,3,,姚正军1,2,3,钱逸2,钱崑2
1 南京航空航天大学材料科学与技术学院,南京 211106;
2 南京航空航天大学面向苛刻环境的材料制备与防护技术工业和信息化部重点实验室,南京 211106;
3 江苏省先进金属材料高技术研究重点实验室,南京 211189
Research Progress in Toughening Epoxy Resin Matrix by Insitu Technique
WEI Bo1, ZHOU Jintang1,2,3, YAO Zhengjun1,2,3, QIAN Yi1, QIAN Kun1
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106;
2 Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106;
3 Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189
下载:  全 文 ( PDF ) ( 18072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自20世纪初环氧树脂问世以来,其优异的胶黏性能、可加工性能、耐化学腐蚀性能等特性使环氧树脂被广泛应用于涂料、包装、电子产品的制造和封装等众多行业。近年来,环氧树脂优良的热稳定性、电绝缘性和物理、力学性能,使其作为复合材料的浸润基体在航空航天、武器装备等众多国家前沿技术领域发挥了重要的作用。采用不同新型树脂模塑传递技术对以环氧树脂为基体的复合材料进行制备与加工,得到的产品具有收缩率小、整体性均一、耐腐蚀性能优良的优点,同时可以兼顾材料对电气性能和力学性能的要求。迄今,环氧树脂在航空工业仍处于主导地位。
随着世界各国航空前沿技术的竞争愈演愈烈,对航空复合材料的发展提出了更高的要求,与航空航天相关的先进复合材料制备技术也在不断丰富和完善。环氧树脂在固化时形成的三维网状立体结构,一方面显著提高了材料的物理强度、硬度,但另一方面,这种结构的形成往往伴随着过高的交联密度,进而导致材料质脆、易裂,在某些极端环境下易发生脆性断裂,限制了环氧树脂的应用和发展。因此,对环氧树脂进行增韧处理,提高最终制品的冲击强度,拓宽其应用领域,一直是航空复合材料领域的研究重点。经过多年对环氧树脂增韧改性的尝试,研究者们已取得了丰硕的成果,各种增韧方案和增韧机理的相继建立大幅拓展了环氧树脂的应用范围。
目前,国内外较为成熟的对环氧树脂进行增韧的方案大多属于原位增韧的范畴,即通过在原有均匀分散的环氧树脂多相体系中引入增强相或形成一种新相,保持浸润基体内部不同相的均匀空间分布状态,最终达到对环氧树脂制品增韧的目的。其中增韧效果优异的方案主要有:(1)在环氧树脂基体中引入橡胶粒子,或是添加热致液晶聚合物、超支化聚合物、核壳结构聚合物等添加剂进行增韧;(2)通过预先设计,将环氧树脂与第二组分形成互穿/半互穿网络聚合物进行增韧;(3)添加具有特殊功能性的纳米粒子对环氧树脂基体进行增韧。对环氧树脂增韧改性的研究具有重要的理论意义和实用价值。
本文对环氧树脂的发展历程进行了简要梳理,从理论研究较为成熟的宏观上对树脂体系进行增韧和近30年来发展迅速的使用纳米改性剂进行增韧两方面,对增韧效果较好的一些原位增韧技术进行了介绍,并列举了近年来报道的重要成果,同时客观评价了不同技术的优缺点。最后分析了环氧树脂增韧技术面临的问题及未来发展的方向,以期为制备轻质、高性能环氧树脂复合材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
WEI Bo
ZHOU Jintang
YAO Zhengjun
QIAN Yi
QIAN Kun
关键词:  环氧树脂  增韧  热致液晶  互穿网络聚合物  纳米粒子    
Abstract: ince the invention of epoxy resin in the early 20th century, due to its great properties in adhesion, machinability and chemical resistance, the epoxy resin is widely used in coating, packaging, electronic products manufacturing and other industries. In recent years, people use epoxy resin as infiltration matrix in the aerospace, arms equipment and many other national frontier technology areas and has achieved lots of research production. When people use different new resin moulding transfer techniques to prepare and process composites with epoxy resin matrix, it is easy to make the final products have some advantages like small shrinkage, uniform integrity and excellent corrosion resistance, and make the materials meet requirements for electrical and mechanical properties at the same time. Up to now, epoxy resin is still in dominant position in aviation industry.
In order to promote the application of aviation industry, countries around the world have put forward higher requirements for epoxy resin, and the related advanced composite material preparation technology has been constantly enriched and improved. Epoxy resin forms a threedimensional network structure in curing process. In one hand, it improves the physical strength and hardness of the materials significantly. In the other hand, high crosslinking density also makes materials brittle and easy to crack. Therefore, it has always been the focus of research in the field of aeronautical composites about how to improve toughness of epoxy resin. Researchers have made great achievements after attempting in toughening epoxy resin for many years. Various toughening schemes and mechanisms have been established successively, which expands the application of epoxy resin greatly.
Most of the mature schemes for toughening epoxy resin belong to the category of insitu toughening at present. A new phase can be formed by adding reinforcing phase into the epoxy resin polyphase system, the uniform spatial distribution of different phases in the infiltrating matrix will improves toughness as the result. Some of the most effective toughening schemes are: (i) toughening epoxy resin by adding rubber particles, thermotropic liquid crystal polymer, hyperbranched polymer, coreshell polymer and so on; (ii) preparing a interpenetrating/semiinterpenetrating polymer networks with epoxy resin and another phase to toughen through predesign; (iii) adding nanoparticles with special functions to toughen epoxy resin matrix. The research on toughening modification of epoxy resin has important theoretical significance and practical value in general.
In this paper, the development of epoxy resin was briefly reviewed through two aspects: the mature macroscopic system and the rapid development of nanomodifiers in recent 30 years. Some insitu toughening technologies with great effect were described in detail, and enumerate the important results published in recent years to support. The paper also evaluated the advantages and disadvantages of different technologies objectively. At the end of this paper, the problems faced by the toughening technology of epoxy resin and the future development direction are analyzed to provide reference for the preparation of light and high performance epoxy resin composites.
Key words:  epoxy resin    toughening    thermotropic liquid crystal    interpenetrating polymer network    nanoparticle
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51702158);中央高校基本科研业务费专项资金(NS2017036);面向苛刻环境的材料制备与防护技术工业和信息化部重点实验室(南京航空航天大学)开放课题基金(56XCA18159-3)
作者简介:  魏波,2017年于南通大学取得高分子材料与工程学士学位,现于南京航空航天大学化学专业攻读硕士学位。研究方向为航天复合材料的制备与吸波材料的研究,已在《广州化学》发表论文一篇。
周金堂,南京航空航天大学材料技术与科学学院副教授、硕士研究生导师。2014年于南京航空航天大学获材料加工工程专业博士学位,主要从事结构/功能一体化复合材料的研究工作。获授权发明专利20余项,近年来在树脂基复合材料、泡沫复合材料等领域发表SCI论文30余篇,EI论文10余篇,包括Applied Surface Science、Materials Letters、Journal of Applied Polymer Science、Polymer Composites、Materials Science and Engineering和Journal of Materials Chemistry C等。
姚正军,南京航空航天大学材料科学与技术学院院长、教授、博士研究生导师,中国工程院重点咨询研究项目组专家;江苏省复合材料学会常务理事;江苏省金属学会副理事长;江苏省金属学会新金属材料学术委员会主任;江苏省热处理及表面改性工程技术研究中心副主任;江苏省高性能合金产业技术创新战略联盟技术专家;江苏省机械工程学会材料工程专业委员会副理事长。主要从事新型金属材料及表面工程和高分子复合材料的研究工作,以第一或通讯作者身份在Journal of Alloys and Compounds、Sensors and Actuators B: Chemical、Materials Letters、Polymer Composites、Journal of Materials Science: Materials in Electronics等SCI期刊上发表论文60余篇,已出版教材2部,获省部级各类奖项6项,获国家授权发明专利20余项。
引用本文:    
魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
WEI Bo, ZHOU Jintang, YAO Zhengjun, QIAN Yi, QIAN Kun. Research Progress in Toughening Epoxy Resin Matrix by Insitu Technique. Materials Reports, 2019, 33(17): 2976-2988.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070231  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2976
1 Huang Z X. Thermosetting resin composites and their applications, Chemical Industry Press, China, 2007 (in Chinese).<br />
黄志雄. 热固性树脂复合材料及其应用, 化学工业出版社, 2007.<br />
2 Li G L. Epoxy resin and epoxy paint, Chemical Industry Press, China, 2003 (in Chinese).<br />
李桂林. 环氧树脂与环氧涂料, 化学工业出版社, 2003.<br />
3 Wei B, Zhou J T, Yao Z J, et al. Guangzhou Chemistry, 2018(4), 1 (in Chinese).<br />
魏波, 周金堂, 姚正军, 等. 广州化学, 2018(4), 1.<br />
4 Xin D R. Mechanical properties and the interface failure mechanism of epoxy resin under hygrothermal condition. Ph.D. Thesis, South China University of Technology, China, 2013 (in Chinese).<br />
辛东嵘. 湿热环境中环氧树脂力学性能和界面破坏机理的研究. 博士学位论文, 华南理工大学, 2013.<br />
5 Ruan Z, Liu Z H, Deng Z P, et al. Equipment Environmental Enginee ring,2015, 12(1), 51 (in Chinese).<br />
阮峥, 刘朝辉, 邓智平, 等. 装备环境工程, 2015, 12(1), 51.<br />
6 Liu X B, Wang X J, Hui X M. Fiber Reinforced Plastics/Composites, 2013(3), 118 (in Chinese).<br />
刘晓蓓, 王晓洁, 惠雪梅. 玻璃钢/复合材料, 2013(3), 118.<br />
7 Wu L Y. In: China Society of Epoxy Resin Application Technology, Nanjing,2009, pp. 16 (in Chinese).<br />
吴良义. 中国环氧树脂应用技术学会,南京 ,2009, 16.<br />
8 Chen B, Wang X J, Wang X Z. China Adhesives,2017(2), 55 (in Chinese).<br />
陈兵, 王晓洁, 王喜占. 中国胶粘剂, 2017(2), 55.<br />
9 Yi X S, Xu Y H, Cheng Q F, et al. Science & Technology Review,2008, 26(6), 84 (in Chinese).<br />
<p>
益小苏, 许亚洪, 程群峰, 等. 科技导报, 2008, 26(6), 84.
</p>
<p>
10 Harani H S, Fellahi S, Bakar M. Journal of Applied Polymer Science,2015, 71, 29.
</p>
11 Harani H S, Fellahi S, Bakar M. Journal of Applied Polymer Science,2015,70, 2603.<br />
12 Wu S. Polymer,1985, 26(12), 1855.<br />
13 Evans A G, Ahmad Z B, Gilbert D G, et al. Acta Metallurgica,1986, 34(1), 79.<br />
14 Pearson R A, Yee A F. Journal of Materials Science,1991, 26(14), 3828.<br />
15 Peace P J, Morris C, Denis B C. Polymer,1996, 37, 1137.<br />
16 Su H, Wei B R, Gong D J, et al. China Adhesives,2007(16), 4 (in Chinese).<br />
苏航, 魏伯荣, 宫大军, 等. 中国胶粘剂, 2007(16), 4.<br />
17 Tan Y, Deng H Y, Tan Z Y. Aerospace Materials and Technology,2018, 48(1), 54(in Chinese).<br />
谭珏, 邓火英, 谭朝元. 宇航材料工艺, 2018, 48(1), 54.<br />
18 Lin Y Y, Wang X L, Zhou Y Q, et al. China Plastics Industry,2016, 44, 32.<br />
19 Peng Q. Study on grafting modified rubber toughened epoxy resin. 's Thesis, Hunan Normal University, China, 2013 (in Chinese).<br />
彭倩. 接枝改性橡胶增韧环氧树脂的研究. 硕士学位论文, 湖南师范大学, 2013.<br />
20 Kang S, Kim D, Kim T, et al. Journal of Nanoscience & Nanotechnology,2017, 17, 7429.<br />
21 Chen B, Wang X J, Wang X Z. China Adhesives,2017, 26, 55.<br />
22 Ma B S, Guo C M, Hu Y H, et al. Lubricating Oil,2013, 28(3), 48 (in Chinese).<br />
马丙水, 郭春梅, 胡玉华, 等. 润滑油, 2013, 28(3), 48.<br />
23 Li Z D. Adhesion,2007(5), 35 (in Chinese).<br />
李子东. 粘接, 2007(5), 35.<br />
24 Yan H J. The research of Polyether phosphat ester reaction toughening epoxy resin. Ph.D. Thesis, East China University of Technology, China, 2012 (in Chinese).<br />
严慧积. 新型磷酸酯反应增韧环氧树脂的研究. 博士学位论文, 华东理工大学, 2012.<br />
25 Zhang Y, Tang X Z, Xu X M. Polymeric Materials Science and Enginee ring,1998(5), 137 (in Chinese).<br />
张影, 唐小真, 徐祥铭. 高分子材料科学与工程, 1998(5), 137.<br />
26 Xiao Z P, Mai K C, Cao M, et al. Guangzhou Chemical Industry,2013, 41(3), 9 (in Chinese).<br />
肖中鹏, 麦堪成, 曹民, 等. 广州化工, 2013, 41(3), 9.<br />
27 Szczepaniak B, Frisch K C, Penczek P, et al. Journal of Polymer Science Part A Polymer Chemistry,2015, 35(13), 2739.<br />
28 Chang P S, Zuo R L, Wang R M, et al. Acta Polymerica Sinica,2002, 1(5), 682 (in Chinese).<br />
常鹏善, 左瑞霖, 王汝敏, 等. 高分子学报, 2002, 1(5), 682.<br />
29 Zhang H Y, Tao Y J. Adhesion,2002, 23(4), 1 (in Chinese).<br />
张宏元, 陶永杰. 粘接, 2002, 23(4), 1.<br />
30 Zhang B L, Tang G L, Shi K Y, et al. Journal of Applied Polymer Science,2015, 71, 177.<br />
31 Qi B, Lu S R, Xiao X E, et al. Express Polymer Letters,2014, 8(7), 467.<br />
32 Zeng Q, Xu Y, Cui B, et al. Insulating Materials,2015, 48(3), 40.<br />
33 Xiao D D, Chun W, Hong X L, et al. Journal of Macromolecular Science: Part A Chemistry,2012, 49(5), 378.<br />
34 Gong D J, Wei B R. Chemistry & Adhesion,2010, 32(6), 50.<br />
35 And W S, Windle A H. Macromolecules,2005, 38(14), 6181.<br />
36 Guo B C, Qiu Q H, Jia D M. Journal of Functional Materials,2000, 31(1), 29 (in Chinese).<br />
郭宝春, 邱清华, 贾德民. 功能材料, 2000, 31(1), 29.<br />
37 Prabu A A, Alagar M. Progress in Organic Coatings,2004, 49(3), 236.<br />
38 Dou D Y, Wang G Y, Hu C P. Acta Chimica Sinica,2001, 59(9), 1476 (in Chinese).<br />
窦东友, 王贵友, 胡春圃. 化学学报, 2001, 59(9), 1476.<br />
39 Dragan E S. Chemical Engineering Journal,2014, 243, 572.<br />
40 Xin H, Pan G, Duanren M A. Science & Technology in Chemical Industry,2016, 24(5), 26.<br />
41 Lv X S, Huang Z X, Huang C, et al. Composites Part B:Engineering,2016, 88, 139.<br />
42 Duan J K. Preparation and self assembly behavior study of epoxy/acrylic acid ester interpenetrating polymer networks and nanocomposites with an aid of external electric field. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2009 (in Chinese).<br />
段景宽. 环氧树脂/丙烯酸酯互穿网络聚合的制备及其纳米复合材料在电场下组装行为的研究. 博士学位论文, 上海交通大学, 2009.<br />
43 Duan J K, Jiang P K. China Plastics, 2010(7), 34 (in Chinese).<br />
段景宽, 江平开. 中国塑料, 2010(7), 34.<br />
44 Liang W, Zhang L. Chemistry and Adhesion,2013, 35(1), 71 (in Chinese).<br />
梁玮, 张林. 化学与黏合, 2013, 35(1), 71.<br />
45 Zhou J L, Fan H P. Shanxi Chemical Industry,2006, 26(2), 43 (in Chinese).<br />
周佳麟, 范和平. 山西化工, 2006, 26(2), 43.<br />
46 Chang P S, Zuo R L, Wang R M, et al. China Adhesives,2002, 11(2), 37 (in Chinese).<br />
常鹏善, 左瑞霖, 王汝敏, 等. 中国胶粘剂, 2002, 11(2), 37.<br />
47 Hu K, Bao L, Chen X, et al. Advances in Polymer Technology,2016, 8, 29.<br />
48 Guan J G, Wang W, Gong R Z. China Adhesives,2000, 9(5), 10(in Chinese).<br />
官建国, 王维, 龚荣洲. 中国胶粘剂, 2000, 9(5), 10.<br />
49 Wang X, Zheng S R, Wang R M. Advanced Materials Research,2012, 535 537, 2499.<br />
50 Yang Y, Chen G, Liew K M. Journal of Applied Polymer Science,2010, 114(5), 2706.<br />
51 Kitamura M, Matsuura Y, Kuwahara H, et al. U.S. patent, US9745410, 2017.<br />
52 Duan Y F, Wang X Q, Liu Y Z, et al. Acta Chimica Sinica,2012, 70, 1179(in Chinese).<br />
段轶锋, 王小群, 刘羽中, 等. 化学学报, 2012, 70, 1179.<br />
53 Wang Y Y. Preparation and characterization of multifunctional nanocomposites and study on their properties of optics, magnetic and sensing etc. Ph.D. Thesis, Chinese Academy of Sciences, China, 2014 (in Chinese).<br />
王岩岩. 多功能纳米复合材料的制备、表征及其光、磁、传感等性能的研究. 博士学位论文, 中国科学院, 2014.<br />
54 Li N, Huang Y, Du F, et al. Nano Letters,2006, 6(6), 1141.<br />
55 Cao J M, Zheng M B, Lu P, et al. Acta Chimica Sinica,2005(16), 1541 (in Chinese).<br />
曹洁明, 郑明波, 陆鹏, 等. 化学学报, 2005(16), 1541.<br />
56 Liu F. Mechanical properties of epoxies and carbon fiber/epoxy compo sites modified by nano particles. Ph.D. Thesis, Harbin Engineering University, China, 2014 (in Chinese).<br />
刘方. 纳米颗粒改性环氧树脂及其复合材料力学性能研究. 博士学位论文, 哈尔滨工程大学, 2014.<br />
57 Tang L, Wang X F, Wu Y T, et al. New Chemical Materials,2012, 40(4), 4 (in Chinese).<br />
唐亮, 王秀峰, 伍媛婷, 等. 化工新型材料, 2012, 40(4), 4.<br />
58 Kutanaei S S, Choobbasti A J. Journal of Materials in Civil Engineering,2016, 28(6), 06016001.<br />
59 卢明辉, 阮居褀, 李政, 等. 中国专利,CN105280175A, 2016.<br />
60 Ekin N, I duygu M G, Gültek A. Turkish Journal of Chemistry,2016, 40(2), 321.<br />
61 Zhang H, Zhang Z, Friedrich K, et al. Acta Materialia,2006, 54(7), 1833.<br />
62 Huang D D, Xu F, Du X S, et al. Journal of Applied Polymer Science,2017, 134(38),45319.<br />
63 Safi S, Zadhoush A, Ahmadi M. Plastics Rubber & Composites,2017, 46(6), 1.<br />
64 Ye H L, Wu Y G, Chen G R, et al. Polymeric Materials Science and Engineering,2016, 32(2), 19 (in Chinese).<br />
叶华立, 吴悦广, 陈国荣, 等. 高分子材料科学与工程, 2016, 32(2), 19.<br />
65 Zhang Y G, Yan P. Inorganic Chemicals Industry,2001, 33(3), 19 (in Chinese).<br />
张永刚, 闫裴. 无机盐工业, 2001, 33(3), 19.<br />
66 Du W B, Yao Z J, Tao X W, et al. Materials Review B:Rearch Papers,2017, 31(7), 57 (in Chinese).<br />
杜文博, 姚正军, 陶学伟, 等. 材料导报:研究篇, 2017, 31(7), 57.<br />
67 Wu Z H. Industrial Catalysis,2004, 12(2), 35 (in Chinese).<br />
吴志鸿. 工业催化, 2004, 12(2), 35.<br />
68 Li W F, Shang R N, Li J S, et al. Chinese Journal of Colloid & Polymer,2016 (3), 114(in Chinese).<br />
李文芳, 商睿凝, 李继双, 等. 胶体与聚合物, 2016 (3), 114.<br />
69 Mandhakini M, Lakshmikandhan T, Chandramohan A, et al. Tribology Letters,2014, 54(1), 67.<br />
70 John M, Prakash R V, Velmurugan R. In: International Mechanical Engineering Congress and Exposition Conference, 2012. ASME, 2012, pp. 649.<br />
71 Lim S H, Zeng K Y, He C B. Materials Science & Engineering A,2010, 527(21), 5670.<br />
72 Zhao S, Schadler L S, Hillborg H, et al. Composites Science & Technology,2008, 68(14), 2976.<br />
73 Luo J C. Studies on partial discharge and its effects in dielectric/piezoelectric/electrostrictive materials with defects. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).<br />
罗家成. 介电/压电/电致伸缩材料内缺陷放电及其效应研究. 博士学位论文, 南京航空航天大学, 2012.<br />
74 Zhang Z M. Study on the electrochemical characteristics and mechanical properties of epoxy resin nanocomposites. Ph.D. Thesis, Taiyuan University of Technology, China, 2017 (in Chinese).<br />
张治民. 环氧树脂纳米复合材料电学特性和力学特性. 博士学位论文, 太原理工大学, 2017.<br />
75 Liu L W. Study on conducticity and breakdown properties of epoxy/montmorillonite nanocomposites. Ph.D. Thesis, Harbin University of Science and Technology, Harbin, 2012 (in Chinese).<br />
刘力伟. 环氧树脂/蒙脱土纳米复合材料电导与击穿性能研究. 博士学位论文, 哈尔滨理工大学, 2012.<br />
76 Artbauer J. Journal of Physics D Applied Physics,1999, 29(2), 446.<br />
77 Tao X W, Yao Z J, Luo X X. Journal of Alloys & Compounds,2017, 718, 126.<br />
78 Yang K, Liu Y, Yin H. China Ceramics,2004, 40(4), 8 (in Chinese).<br />
杨柯, 刘阳, 尹虹.中国陶瓷, 2004, 40(4), 8.<br />
79 Li W, Jiang L L, Huang X L, et al. Chemistry and Adhesion,2012, 34(2), 8 (in Chinese).<br />
李伟, 姜蕾蕾, 黄伣丽, 等. 化学与粘合, 2012, 34(2), 8.<br />
80 Liang B, Wang P, Li R, et al. Total Corrosion Control, 2014 (7), 58 (in Chinese).<br />
梁斌, 王鹏, 李瑞, 等. 全面腐蚀控制, 2014 (7), 58.<br />
81 Chen Y, Zhang X, Sun J, et al. Journal of Jiangsu University,2013, 34, 335.<br />
82 AlTuraif H A. Progress in Organic Coatings,2010, 69(3), 241.<br />
<p>
83 Li Z, Haidry A A, Gao B, et al. Applied Surface Science,2017, 412, 638.
</p>
<p>
84 Lu S R. Studies on preparation and properties of epoxy resin/silica titanic hybrid materials. Ph.D. Thesis, Xiangtan University, China, 2005 (in Chinese).
</p>
陆绍荣. 环氧树脂/二氧化硅二氧化钛纳米杂化材料的制备及其性能研究. 博士学位论文, 湘潭大学, 2005.<br />
85 Guo J, Chen Y, Shao Z, et al. IEEJ Transactions on Fundamentals & Materials,2016, 136(2), 107.<br />
86 刘伟良, 徐文华, 张丽东, 等. 中国专利, CN102702931A, 2012, 638.<br />
87 Yi X S, An X, Tang B, et al. Advanced Engineering Materials,2010, 5(10), 729.
[1] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[2] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[3] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[4] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[5] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[6] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[7] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[8] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[9] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[10] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[11] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[12] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[13] 肖治国, 成岳, 唐伟博, 余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[14] 冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
[15] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed