Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2252-2259    https://doi.org/10.11896/cldb.18040124
  金属与金属基复合材料 |
核壳型稀土上转换纳米材料及其生物医学应用
冯爱玲,徐榕,王彦妮,张亚妮,林社宝
宝鸡文理学院物理与光电技术学院,宝鸡 721016
Core-Shell Structured Rare Earth Upconversion Nanoparticles and Their Biomedical Applications
FENG Ailing, XU Rong, WANG Yanni, ZHANG Yani, LIN Shebao
School of Physics and Optoelectronics Technology, Baoji University of Arts & Science, Baoji 721016
下载:  全 文 ( PDF ) ( 5554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 稀土上转换纳米材料因具有能将近红外光转化为可见光的光学性质,在显示、探测尤其是生物医学等领域有着广泛的应用。但由于上转换发光机制的局限性以及稀土离子的电子跃迁特性,稀土上转换纳米材料的荧光量子产率很低,这极大地限制了该材料的发展。因此,寻找可以有效提高稀土上转换纳米材料发光效率的方法尤为重要。通过制备核壳型稀土上转换纳米材料,可以抑制稀土上转换材料的表面猝灭、钝化内核表面的晶格缺陷、隔离外界不利因素的干扰,从而大幅提高材料的上转换效率。同时可赋予材料一系列优异的性能。,例如:表面包覆单层壳层可以改变材料表面的亲水性,而包覆多层壳层能使上转换材料集诊疗功能于一体。
本文从稀土离子以及上转换发光方式的特点入手,分析了稀土上转换纳米材料的缺陷,阐述了几种较为常用的稀土上转换纳米材料制备方法的优缺点,重点介绍了几种近年来研究较为广泛的核壳结构,包括惰性核壳结构、活性核壳结构和多层核壳结构。分别对这三类核壳结构材料的结构特点和应用现状进行总结,并探讨了它们对稀土上转换纳米材料起到的作用。指出惰性壳层对稀土上转换纳米材料的主要作用是隔离外界环境干扰以及降低材料表面活性,活性壳层可通过在外壳中掺杂不同的离子来引入新的功能。在稀土上转换纳米材料表面包覆多层壳层,一方面能够有效防止离子跃迁减少荧光猝灭;另一方面通过制备多层壳层可以充分利用稀土材料以及各种治疗方式的优点,为制备诊疗一体化纳米治疗平台提供新的思路。最后综述了核壳型稀土上转换纳米材料在深层组织成像、多模式成像、药物传输、光热疗法和光动力疗法方面取得的研究进展,提出核壳型稀土上转换纳米材料在发展过程中存在外壳与内核的结合强度不易控制、最佳外壳包覆厚度尚未明确以及材料还未工业化等问题,展望了今后的研究重点应放在深入探索核壳结构的作用机理上,从原理出发找到更加高效的壳层制备手段,进一步拓展核壳型稀土上转换纳米材料在生物医学领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯爱玲
徐榕
王彦妮
张亚妮
林社宝
关键词:  核壳结构  稀土上转换发光  纳米粒子  生物成像  疾病治疗    
Abstract: Rare earth upconversion nanoparticles have attracted considerable attention in the fields of display, detection, especially biomedicine because they can convert near infrared light into visible light. However, due to the limitation of upconversion luminescence mechanism and the electron transition characteristics of rare earth ions , the fluorescence quantum yield of rare earth upconversion nanoparticles is very low, which greatly limits theirs development. Therefore, it is very important to improve the luminescence efficiency of rare earth upconversion nanoparticles. Coating shell layer on rare earth upconversion nanoparticles by preparing core-shell structured materials can inhibit the surface quenching of rare earth materials, passivate lattice defects of the inner-core surface, isolate the interference of external adverse factors, which greatly improve the efficiency of transformation on the luminescence. Meanwhile, it can bring a series of excellent performance. For example, coating single-layer shell can change the material surface hydrophobicity; coating multilayer shells can prepare multifunctional nanocomposites with diagnostic and therapeutic function.
Based onthe characteristics of rare earth ions and upconversion luminescence, the defects of rare earth upconversion nanoparticles were analyzed. This paper also focused on the advantages and disadvantages of several kinds of the preparation methods of core-shell structured nanomaterials which were widely studied in recent years, including inert core-shell structure, active core-shell structure and multilayer core-shell structure. The structural characteristics and application status of three types of core-shell structures were summarized. And their effects of core-shell structure on the luminescence of upconversion nanoparticles were discussed. We pointed out that the main effects of the inert shell on the fluorescence of the rare earth upconversion nanoparticles, including isolating the external environment interference and reducing the surface activity of the materials. Coating active shell on the surface can introduce new functions by doping different ions in the shell. Multi-layer shell can not only effectively prevent ion transition and reduce fluorescence quenching, but also provide new ideas for the preparation of integrated nanometer treatment platform for diagnosis and treatment by making full use of the advantages of rare earth materials and various treatment methods. Finally , we reviewed the applications of rare earth upconversion nanoparticles with core-shell-structure in deep tissue imaging, multi-mode imaging, drug delivery, photothermal therapy and photodynamic therapy. And we also pointed out the existing problems in development of core-shell-structured materials. For example, the bonding strength between shell and core was not easy to control; the optimum shell coating thickness was not uncertain; and the materials were not still industrialized. In the future, the emphasis should be put on exploring the mechanism of core-shell structure and seeking for more efficient methods of shell preparation based on the principles, in order to further expand the application of core-shell structured rare earth upconversion nanomaterials in biomedical fields.
Key words:  core-shell structure    rare earth    upconversion luminescence    nanoparticles    bioimaging    disease treatment
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  O616  
基金资助: 陕西省自然科学基础研究计划(2015JM5215);中国博士后科学基金面上项目(2016M601878);宝鸡市科技计划项目(16RKX1-29);宝鸡市科技攻关项目(14GYGG-5-1)
作者简介:  冯爱玲,博士,教授,硕士研究生导师,陕西省青年“千人计划”入选者,宝鸡文理学院“横渠学者”入选者。2002年7月本科毕业于长安大学应用化学专业,2005年7月硕士毕业于第四军医大学药物化学专业,2011年于西安交通大学材料科学与工程专业取得博士学位,2012-2015年在西安交通大学进行博士后研究工作,2016-2018年于美国圣路易斯华盛顿大学访学。研究方向主要包括:镁基复合材料的制备及骨组织植入应用、纳米羟基磷灰石纤维的生长机制;稀土上转换材料的可控合成及荧光增强机理研究;新型微纳高导热高介电绝缘复合材料的设计与研究。以第一作者或通讯作者在国内外学术期刊上发表论文20余篇,总被引900次(Google学术引用)。发表的学术论文有8篇入选ESI数据库高被引论文,其中2篇同时入选ESI数据库热点论文。申请国家发明专利 8项(其中授权 4 项)。主持国家自然科学基金青年项目1项,主持其它省厅级及市级科研项目等 8项,作为骨干成员参与了国家重大仪器开发专项1项,自然科学基金委重大国际(地区)合作研究项目1项。以第一获奖人获得陕西省自然科学优秀学术论文奖 1 项。
引用本文:    
冯爱玲, 徐榕, 王彦妮, 张亚妮, 林社宝. 核壳型稀土上转换纳米材料及其生物医学应用[J]. 材料导报, 2019, 33(13): 2252-2259.
FENG Ailing, XU Rong, WANG Yanni, ZHANG Yani, LIN Shebao. Core-Shell Structured Rare Earth Upconversion Nanoparticles and Their Biomedical Applications. Materials Reports, 2019, 33(13): 2252-2259.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040124  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2252
1 Auzel F. Chemical Reviews, 2004, 104(1), 139.2 Ma W J, You F T, Peng H S, et al. Journal of Physics, 2017, 66(10), 307 (in Chinese).马文君, 由芳田, 彭洪尚, 等.物理学报, 2017, 66(10), 307.3 Feng A L, You M L, Tian L M, et al. Scientific Reports, 2015, 5(10), 7779.4 Sun R J, Qiu P Y, Zhang C L, et al. CIESC Journal, 2014 (7), 2620 (in Chinese).孙容瑾, 邱培宇, 张春雷, 等.化工学报, 2014 (7), 2620.5 Binnemans K. Chemical Reviews, 2009, 109(9), 4283.6 Benelle C, Gatteschi D. Chemical Reviews, 2002, 102(6), 2369.7 Wu F. The luminescence dynamics in lanthanide doped upconversion core/shell nanoparticles. Doctoral thesis, Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Science, China, 2015 (in Chinese).吴飞. 核壳结构的纳米稀土上转换荧光材料发光动力学研究. 博士学位论文, 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.8 Soukka T, Rantanen T, Kuningas K. Annals of the New York Academy of Sciences, 2008, 1130(1), 188.9 Dong H, Su L D, Yan C H. Chemical Society Reviews, 2015, 44(6), 1608.10 Stouwdam J W, Van Veggel F. Nano Letters, 2002, 2(7), 733.11 Yi G S, Chow G M. Journal of Materials Chemistry, 2005, 15(41), 4460.12 Yi G S, Chow G M. Advanced Functional Materials, 2006, 16(18), 2324.13 Mai H X, Zhang Y W, Si R, et al. Journal of the American Chemical Society, 2006, 128(19), 6426.14 Liu C, Wang H, Li X, et al. Journal of Materials Chemistry, 2009, 19(21), 3546.15 Wang F, Chatterjee D K, Li Z Q, et al. Nanotechnology, 2006, 17(23), 5786.16 Liu Y X, Pisarski W A, Zeng S J, et al. Optics Express, 2009, 17(11), 9089.17 Wang F, Banerjee D, Liu Y S, et al. Analyst, 2010, 135(8), 1839.18 Weissleder R. Nature Biotechnology, 2001, 19(4), 316.19 Chen G Y, Ohulchanskyy T Y, Liu S, et al. ACS Nano, 2012, 6(4), 2969.20 Ntziachristos V, Ripoll J, Wang L H V, et al. Nature Biotechnology, 2005, 23(3), 313.21 Feng A L, Lin M, Tian L M, et al. Rsc Advances, 2015, 5(94), 76825.22 Chen G Y, Qiu H L, Prasad P N, et al. Chemical Reviews, 2014, 114(10), 5161.23 Boyer J C, Van Veggel F. Nanoscale, 2010, 2(8), 1417.24 Kompe K, Borchert H, Storz J, et al. Angewandte Chemie-International Edition, 2003, 42(44), 5513.25 Yi G S, Chow G M. Chemistry of Materials, 2007, 19(3), 341.26 Chen M L, Ma Y, Li M Y. Materials Letters, 2014, 114, 80.27 Chen G Y, Agren H, Ohulchanskyy T Y, et al. Chemical Society Reviews, 2015, 44(6), 1680.28 Huang P, Zheng W, Zhou S, et al. Angewandte Chemie-International Edition, 2014, 53(5), 1252.29 Li Z, Zhang Y, Shuter B, et al. Langmuir, 2009, 25(20), 12015.30 Yu S X, Wang Z Q, Cao R J, et al. Journal of Fluorine Chemistry, 2017, 200, 77.31 Peng Y Q, Li Z H, Liu Z E, et al. Scientia Sinica(Chimica) , 2015,45(11), 1159 (in Chinese).彭叶青, 李志豪, 刘子恩, 等.中国科学:化学, 2015, 45(11), 1159.32 Cheng L, Yang K, Li Y G, et al.Angewandte Chemie-International Edition, 2011, 50(32), 7385.33 Du Y P, Sun X, Zhang Y W, et al. Crystal Growth & Design, 2009, 9(4), 2013.34 Schafer H, Ptacek P, Zerzouf O, et al. Advanced Functional Materials, 2008, 18(19), 2913.35 Yi G S, Peng Y F, Gao Z Q. Chemistry of Materials, 2011, 23(11), 2729.36 Ouyang J, Yin D G, Cao X Z, et al. Dalton Transactions, 2014, 43(37), 14001.37 Stecher J T, Rohlfing A B, Therine M J. Nanomaterials, 2014, 4(1), 69.38 Wong H T, Vetrone F, Naccache R, et al. Journal of Materials Chemistry, 2011, 21(41), 16589.39 Zhang F, Chen R C, Li X M, et al. Nano Letters, 2012, 12(6), 2852.40 Wang Y F, Sun L D, Xiao J W, et al. Chemistry-A European Journal, 2012, 18(18), 5558.41 Ghosh P, Oliva J, De La Rose E, et al. Journal of Physical Chemistry C, 2008, 112(26), 9650.42 Guo H, Li Z Q, Qian H S, et al. Nanotechnology, 2010, 21(12), 6.43 Chen F, Zhang S J, Bu W B, et al. Chemistry-A European Journal, 2012, 18(23), 7082.44 Wang C, Xu L G, Xu J T, et al. Dalton Transactions, 2017, 46(36), 12147.45 Qiu H L, Yang C H, Shao W, et al. Nanomaterials, 2014, 4(1), 55.46 Qiao X F, Zhou J C, Xiao J W, et al. Nanoscale, 2012, 4(15), 4611.47 Song L Z, Zhao N, Xu F J. Advanced Functional Materials, 2017, 27(32), 10.48 Robinson J T, Hong G S, Liang Y Y, et al. Journal of the American Chemical Society, 2012, 134(25), 10664.49 Fukumura D A I, Duda D G, Munn L L, et al. Microcirculation, 2010, 17(3), 206.50 Chen G Y, Shen J, Ohulchanskyy T Y, et al. ACS Nano, 2012, 6(9), 8280.51 Zhong Y T, Tian G, Gu Z J, et al. Advanced Materials, 2014, 26(18), 2831.52 Shankar L K, Menkens A, Sullivan D C. Molecular Imaging in Oncology, Humana Press, US, 2008.53 Xia A, Gao Y, Zhou J, et al. Biomaterials, 2011, 32(29), 7200.54 Zhu X J, Zhou J, Chen M, et al. Biomaterials, 2012, 33(18), 4618.55 Sun Y, Zhu X J, Peng J J, et al. ACS Nano, 2013, 7(12), 11290.56 Zhang F, Braun G B, Pallaoro A, et al. Nano Letters, 2012, 12(1), 61.57 Kang X J, Cheng Z Y, Li C X, et al. Journal of Physical Chemistry C, 2011, 115(32), 15801.58 Cheng L, Yang K, Li Y G, et al. Biomaterials, 2012, 33(7), 2215.59 Dong B A, Xu S, Sun J A, et al. Journal of Materials Chemistry, 2011, 21(17), 6193.60 Kalka K, Merk H, Mukhtar H. Journal of the American Academy of Dermatology, 2000, 42(3), 389.61 Brown S B, Brown E A, Walker I. Lancet Oncology, 2004, 5(8), 497.62 Konan Y N, Gurny R, All Mann E. Journal of Photochemistry & Photo-biology, B: Biology, 2002, 66(2), 89.63 Wang C, Tao H Q, Cheng L, et al. Biomaterials, 2011, 32(26), 6145.64 Idris N M, Gnanasammandhan M K, Zhang J, et al. Nature Medicine, 2012, 18(10), 1580.
[1] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[2] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[3] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[4] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[5] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[6] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[7] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[8] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[9] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[10] 肖治国, 成岳, 唐伟博, 余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[11] 韦晶, 韩希思, 张承武, 吴琼, 秦晓飞, 李林, 余昌敏, 黄维. 微小RNA纳米递送体系的构建及其研究进展[J]. 材料导报, 2019, 33(1): 16-26.
[12] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[13] 吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
[14] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[15] 董虹星, 刘秋平, 贺跃辉. BiVO4基纳米异质结光催化材料的研究进展[J]. 材料导报, 2018, 32(19): 3358-3367.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed