Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4041-4046    https://doi.org/10.11896/j.issn.1005-023X.2018.23.002
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性
谭丰1, 2, 徐洋洋1, 李卫1, 2, 徐明丽1, 闵春刚1, 史庆南2, 刘锋3, 杨喜昆1, 2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 昆明理工大学分析测试研究中心,昆明 650093;
3 云南省贵金属新材料控股集团公司,昆明 650500
Assembly of Au@Pt Core-Shell Nanoparticles with a Controlled Shell Thickness at the Surface of Thiol-functionalized Multi-walled Carbon Nanotubes to Achieve High Activity Towards Electrocatalytic Methanol Oxidation
TAN Feng1, 2, XU Yangyang1, LI Wei1, 2, XU Mingli1, MIN Chungang1, SHI Qingnan2, LIU Feng3, YANG Xikun1, 2
1 College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Research Center for Analysis and Measure, Kunming University of Science and Technology,Kunming 650093;
3 Yunnan Sino-Precious Metals Holding Co., Ltd, Kunming 650500
下载:  全 文 ( PDF ) ( 2618KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作致力于研究核壳结构Au@Pt 纳米粒子(Au@Pt NPs)在多壁碳纳米管(MWCNTs)上的组装,试图获得高的甲醇电催化氧化活性。利用光化学晶种生长法合成了Au@Pt NPs,并通过改变Au与Pt的原子比来控制壳层(Pt层)的厚度,然后将不同壳层厚度的Au@Pt NPs组装到巯基(-SH)功能化的MWCNTs上,获得了一系列Au@Pt/MWCNTs复合物。应用透射电子显微镜(TEM)和X射线光电子能谱(XPS)研究了Au@Pt NPs和Au@Pt/MWCNTs复合物的形貌结构、表面化学组成和化学价态,并结合电化学方法研究了Au@Pt NPs的Pt壳层厚度对其组装效果的影响,以及测试了Au@Pt/MWCNTs催化剂对甲醇的电催化氧化的活性。结果表明,Au@Pt NPs通过其表面的Au或Pt与MWCNTs上的-SH形成共价键,从而实现Au@Pt NPs在MWCNTs上的组装。Pt壳层厚度对Au@Pt NPs在MWCNTs上组装的影响较大:当Pt壳层没有完全包裹Au核时,Au@Pt NPs表面暴露的Au促进了Au@Pt NPs在MWCNTs上的组装;而当Pt壳层完全包裹Au核时,Au@Pt NPs表面呈氧化态的Pt(Ⅱ)则对核壳纳米粒子的组装不利。Au、Pt原子比例为1∶1时,Au@Pt NPs能均匀地组装在MWCNTs上,且Au@Pt/MWCNTs(1∶1)催化剂对甲醇的电催化氧化具有较高的活性和稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭丰
徐洋洋
李卫
徐明丽
闵春刚
史庆南
刘锋
杨喜昆
关键词:  直接甲醇燃料电池(DMFC)  Au@Pt核壳纳米粒子  多壁碳纳米管(MWCNTs)  巯基  组装  电催化氧化    
Abstract: It is the aim of this work to explore the assembly of Au@Pt core-shell nanoparticles (Au@Pt NPs) on multi-walled carbon nanotubes (MWCNTs) surfaces, attempting to acquire high activity for electrocatalytic methanol oxidation. We synthesized Au@Pt NPs whose shell (Pt layer) thickness can be varied by changing the molar ratio of Au/Pt, and then assembled these Au@PtNPs onto thiol (-SH)-functionalized MWCNTs surfaces to form a series of Au@Pt/MWCNTs composites. The surface chemical state, structure, and morphology of the Au@Pt NPs and Au@Pt/MWCNTs composites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS). The electrochemical tests including cyclic voltammetry (CV) and chronoamperometry (CA) were conducted to determine the assembly quality of Au@Pt NPs differing in shell thickness, and to cha-racterize the activity of Au@Pt/MWCNTs catalysts. The results confirmed the successful assembly of Au@Pt NPs on MWCNTs surfaces via the covalent Pt-S/Au-S bonds formed between the monometallic Au or Pt of Au@Pt NPs and the thiol group of MWCNTs. The dispersion of Au@Pt NPs on MWCNTs highly depends on the atom ratios of Au/Pt. When the Pt envelopes outside the Au cores are incomplete, the exposed Au atoms facilitate the assembly of Au@Pt NPs. And on the contrary, if the Au cores are entirely coated by the Pt shell, the oxidation state Pt(Ⅱ) on the Au@Pt NPs surfaces will exert a negative effect. In particular, an 1∶1 atomic ratio of Au/Pt can result in the satisfactory dispersion of Au@Pt NPs on MWCNTs, also a distinctly higher activity and better stability of Au@Pt/MWCNTs (1∶1) compared with Pt/MWCNTs toward electrocatalytic methanol oxidation in alkaline media.
Key words:  direct methanol fuel cell (DMFC)    Au@Pt core-shell nanoparticles    multiwalled carbon nanotubes (MWCNTs)    thiol    assembly    electrocatalytic oxidation
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  O646  
  O484  
基金资助: 国家自然科学基金(51374117; 21363012; 51164017); 昆明市科技计划项目(2015-1-G-01001)
作者简介:  谭丰:男,1982年生,博士研究生,研究方向为纳米材料、新能源材料 E-mail:649505645@qq.com;杨喜昆:通信作者,男,1963年生,教授级高工,研究方向为纳米材料、新能源材料 E-mail:yxk630@hotmail.com
引用本文:    
谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
TAN Feng, XU Yangyang, LI Wei, XU Mingli, MIN Chungang, SHI Qingnan, LIU Feng, YANG Xikun. Assembly of Au@Pt Core-Shell Nanoparticles with a Controlled Shell Thickness at the Surface of Thiol-functionalized Multi-walled Carbon Nanotubes to Achieve High Activity Towards Electrocatalytic Methanol Oxidation. Materials Reports, 2018, 32(23): 4041-4046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.002  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4041
1 Zhang K, Yang W, Ma C, et al.A highly active, stable and synergistic Pt nanoparticles/Mo2 C nanotube catalyst for methanol electro-oxidation[J].NPG Asia Materials,2015,7:153
2 Ali S, Ahmed R, Sohail M, et al.Co@Pt core-shell nanoparticles supported on carbon nanotubes as promising catalyst for methanol electro-oxidation[J].Journal of Industrial & Engineering Chemistry,2015,28:344
3 Park I S, Lee K S, Cho Y H, et al.Methanol electro-oxidation on carbon-supported and Pt-modified Au nanoparticles[J].Catalysis Today,2008,132:127.
4 Yang L, Yang W, Cai Q, et al.Well-dispersed PtAu nanoparticles loaded into anodic titania nanotubes: A high antipoison and stable catalyst systemfor methanol oxidation in alkaline media[J].Journal of Physical Chemistry C,2007,111(44):16613.
5 Wang J, Yin G, Liu H, et al.Carbon nanotubes supported Pt-Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles[J].Journal of Power Sources,2009,194:668.
6 Wang G, Huang B, Xiao L, et al.Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells[J].Journal of the American Chemical Society,2014,136:9643.
7 Liu B, Liao S, Liang Z.Core-shell structure: The best way to achieve low-Pt fuel cell electrocatalysts[J].Progress in Chemistry,2011(5):852(in Chinese).
刘宾,廖世军,梁振兴.核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J].化学进展,2011(5):852.
8 Li X, Liu J, He W, et al.Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction[J].Journal of Colloid and Interface Science,2010,344:132.
9 Sneed B T, Young A P, Jalalpoor D, et al.Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: Influence of Ni sandwich layers on catalytic electrooxidations[J].ACS Nano,2014,8(7):7239.
10 Zhang L, Roling L T, Wang X, et al.Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets[J].Science,2015,349(6246):412.
11 Sun P, Wei Q, Zhang Y, et al.Core-shell structured catalysts with platinum skin for fuel cells: The state-of-art methodological advances in fabrication and nanostructure control[J].Materials Review A: Review Papers,2018,32(5):1427(in Chinese).
孙培川,魏清茂,张宇振,等.核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J].材料导报:综述篇,2018,32(5):1427.
12 Mallik K, Mandal M, Pradhan N, et al.Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of “Core-Shell” type structures[J].Nano Letters,2001,6(1):319.
13 Lee Y W, Kim M, Kim Z H, et al.One-step synthesis of Au@Pd core-shell nanooctahedron[J].Journal of the American Chemical Society,2009,131:17036.
14 Wang S, Kristian N, Jiang S, et al.Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation[J].Electrochemistry Communications,2008,10:961.
15 Zhao D, Xu B.Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles[J].Angewandte Chemie International Edition,2006,118:5077.
16 Xu Y, Dong Y, Shi J, et al.Au@Pt core-shell nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation[J].Catalysis Communications,2011,13:54.
17 Raoof J, Ojani R, Rashid-Nadimi S, et al.Electrochemical synthesis of bimetallic Au@Pt nanoparticles supported on gold film electrode by means of self-assembled monolayer[J].Journal of Electroanalytical Chemistry,2010,641:71.
18 Kumar S, Zou S.Electrooxidation of CO on uniform arrays of Au nanoparticles:Effects of particle size and interparticle spacing[J].Langmuir,2009,25(1):574.
19 Li W, Xie S, Qian L, et al.Large-scale synthesis of aligned carbon nanotubes[J].Science,1996,274:1701.
20 Zhao Y, Yang X, Tian J, et al.Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media[J].International Journal of Hydrogen Energy,2010,35:3249.
21 Zhang S, Qing M, Zhang H, et al.Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd-Au catalyst[J].Electrochemistry Communications,2009,11:2249.
22 Yang G, Gao G, Zhao G, et al.Effective adhesion of Pt nanoparticles on thiolated multi-walled carbon nanotubes and their use for fabricating electrocatalysts[J].Carbon,2007,45:3036.
23 Yang D, Hennequin B, Sacher E.XPS demonstration of π-π interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt Nanoparticles[J].Chemistry of Materials,2006,18(21):5033.
24 Sainsbury T, Stolarczyk J, Fitzmaurice D.An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multiwalled carbon nanotubes[J].The Journal of Physical Chemistry B,2005,109(34):16310.
25 Jin Y, Shen Y, Dong S.Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction[J].The Journal of Physical Chemistry B,2004,108(24):8142.
26 Deivaraj T, Chen, W, Lee J Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol[J].Journal of Materials Chemistry,2003,13:2555.
27 Oezaslan M, Hasche F, Strasse P.PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media[J].Journal of the Electrochemical Society,2012,159(4):444.
28 Oezaslan M, Hasche F, Strasse P.Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells[J].Journal of the Electrochemical Society,2012,159(4):394.
29 Xiong L, Yang X, Xu M, et al.Pt-Ni alloy nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation in alkaline media[J].Journal of Solid State Electrochemistry,2013,17:805.
30 Duong H, Rigsby M, Zhou W, et al.Oxygen reduction catalysis of the Pt3Co alloy in alkaline and acidic media studied by X-ray photoelectron spectroscopy and electrochemical methods[J].The Journal of Physical Chemistry C,2007,111(36):13460.
[1] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[2] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[5] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[6] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[7] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[8] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[9] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[10] 马明亮, 林静, 万菲, 马衍轩, 冯超, 卢桂霞, 张家栋. 有机-无机杂化一维磁性自组装聚合物纳米链的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 29-33.
[11] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[12] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[13] 李晓东,安梅梅. 2-氨基-5-巯基-1,3,4-噻二唑对青铜文物的缓蚀性能及密度泛函理论分析*[J]. 材料导报编辑部, 2017, 31(22): 163-168.
[14] 王开丽, 董珂琪, 王海波, 王维, 李楠, 徐志伟, 吕汉明, 匡丽赟. 石墨烯基复合材料的三维组装与应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 41-52.
[15] 胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed