Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 29-33    https://doi.org/10.11896/j.issn.1005-023X.2017.05.005
  材料综述 |
有机-无机杂化一维磁性自组装聚合物纳米链的研究进展*
马明亮1,2, 林静1,2, 万菲1,2, 马衍轩1,2, 冯超1,2, 卢桂霞1,2, 张家栋1,2
1 青岛理工大学土木工程学院, 青岛 266033;
2 山东省蓝色经济区工程建设与安全协同创新中心, 青岛 266033
Research Progress of Organic-Inorganic Hybrid One-dimensional Magnetic Self-assembly Polymer Nanochains
MA Mingliang1,2, LIN Jing1,2, WAN Fei1,2, MA Yanxuan1,2, FENG Chao1,2,
LU Guixia1,2, ZHANG Jiadong1,2
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033;
2 Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033
下载:  全 文 ( PDF ) ( 1361KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着纳米科技的发展, 有机-无机杂化一维磁性自组装聚合物纳米链的设计合成与应用成为新的研究热点。综述了有机-无机杂化一维磁性自组装聚合物纳米链的磁场诱导自组装、模板诱导自组装和偶极诱导自组装等制备方法,并介绍了其在光学、生物医学和水处理等领域的应用。最后指出有机-无机杂化一维磁性自组装聚合物纳米材料制备技术存在的不足,并对其应用前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马明亮
林静
万菲
马衍轩
冯超
卢桂霞
张家栋
关键词:  有机-无机杂化  一维磁性聚合物纳米链  自组装    
Abstract: With the development of nanotechnology, preparation and application of organic-inorganic hybrid one-dimensional magnetic self-assembly polymer nanochains have become a new research hotspot. This paper reviews the preparation methods such as magnetic field-induced self-assembly, template-induced self-assembly and dipole-induced self-assembly, and the applications in optical, biomedical and water treatment. Finally, the remaining problem and future development prospect are also proposed.
Key words:  organic-inorganic hybrid    one-dimensional magnetic polymer nanochains    self-assembly
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  O648  
基金资助: 国家自然科学基金青年基金(51503116)
作者简介:  马明亮:男,1983年生,博士,讲师,主要从事新型功能材料自组装研究 E-mail:mamingliang@qut.edu.cn
引用本文:    
马明亮, 林静, 万菲, 马衍轩, 冯超, 卢桂霞, 张家栋. 有机-无机杂化一维磁性自组装聚合物纳米链的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 29-33.
MA Mingliang, LIN Jing, WAN Fei, MA Yanxuan, FENG Chao, LU Guixia, ZHANG Jiadong. Research Progress of Organic-Inorganic Hybrid One-dimensional Magnetic Self-assembly Polymer Nanochains. Materials Reports, 2017, 31(5): 29-33.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.005  或          https://www.mater-rep.com/CN/Y2017/V31/I5/29
1 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56.
2 Xu S, Fei G, Ouyang H, et al. Controllable fabrication of nickel nanoparticle chains based on electrochemical corrosion[J]. J Mater Chem C,2015,3:2072.
3 Qiao X, Sun A, Wang C, et al. Electric field induced structural co-lor changes of highly monodisperse hollow Fe3O4@C colloidal suspensions[J]. Colloids Surf A: Physicochem Eng Aspects,2016,498:74.
4 Wang M, He L, Hu Y, et al. Magnetically rewritable photonic ink based on superparamagnetic nanochains[J]. J Mater Chem C,2013,1(1):6151.
5 Xia Z, Wen W. Synthesis of nickel nanowires with tunable characteristics[J]. Nanomaterials,2016,6:19.
6 Li C, Tan J, Li H, et al. Fast magnetic-field-induced formation of one-dimensional structured chain-like materials via sintering of Fe3O4/poly(styrene-co-n-butyl acrylate-co-acrylic acid) hybrid microspheres[J]. RSC Adv,2015,5(36):28735.
7 Toulemon D, Rastei M, Schmool D, et al. Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nano-particles in chains[J]. Adv Funct Mater,2016,26(15):2454.
8 Adireddy S, Carbo C, Yuan Y, et al. High-yield solvothermal synthesis of magnetic peapod nanocomposites via the capture of preformed nanoparticles in scrolled nanosheets[J]. Chem Mater,2013,25(19):3902.
9 Cerda J, Sanchez P, Lusebrink D, et al. Flexible magnetic filaments under the influence of external magnetic fields in the limit of infinite dilution[J]. Phys Chem Chem Phys,2016,18(18):12616.
10 Wang M, He L, Yin Y. Magnetic field guided colloidal assembly[J]. Mater Today,2013,16(4):110.
11 Sheparovych R, Sahoo Y, Motornov M, et al. Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly[J]. Chem Mater,2006,18(3):591.
12 Xiong Y, Chen Q, Tao N, et al. The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly[J]. Nanotechnology,2007,18(34):1351.
13 Ma M L, Zhang Q Y, Zhang H P, et al. Preparation of one-dimensional Fe3O4/P(MAA-DVB) nanochains by magnetic-field-induced precipitation polymerization[J]. Sci Sin Chim,2012(7):1007 (in Chinese).
马明亮, 张秋禹, 张和鹏, 等.磁场诱导沉淀聚合制备一维Fe3O4/ P(MAA-DVB)纳米链[J]. 中国科学:化学, 2012(7):1007.
14 Ma M, Zhang Q, Zhang H, et al. One-pot synthesis of highly magnetically sensitive nanochains coated with a fluorescent shell by magnetic-field-induced precipitation polymerization [J]. Sci Adv Mater,2013,5(6):623.
15 Ma M,Zhang Q,Dou J,et al.Fabrication of one-dimensional Fe3O4/P(GMA-DVB) nanochains by magnetic-field-induced precipitation polymerization[J]. J Colloid Interface Sci,2012,374(1):339.
16 Ma M, Zhang Q, Dou J, et al. Fabrication of 1D Fe3O4/P(NIPAM-MBA) thermosensitive nanochains by magnetic-field-induced precipitation polymerization[J]. Colloid Polym Sci,2012,290(12):1207.
17 Ma M, Ma Y, Zhang B, et al. Fabrication and characterization of 1D Fe3O4/P(NIPAM-MAA- MBA) nanochains with thermo-and pH-responsive shell for controlled release for phenolphthalein [J]. J Mater Sci,2015,50(8):3083.
18 Ma M, Zhang Q,Xin T,et al.Preparation and characterization of structure-tailored magnetic fluorescent Fe3O4/P(GMA-EGDMA-NVCz) core-shell microspheres[J]. J Mater Sci,2013,48(15):5302.
19 Yuan J, Müller A. One-dimensional organic-inorganic hybrid nanomaterials[J]. Polymer,2010,51(18):4015.
20 Wang C, Xu C, Zeng H, et al. Recent progress in syntheses and applications of dumbbell-like nanoparticles[J]. Adv Mater,2009,21(30):3045.
21 Li X, Thompson J, Zhang Y, et al. Efficient synthesis of tailored magnetic carbon nanotubes via a noncovalent chemical route[J]. Nanoscale,2011,3(2):668.
22 Correa-Duarte M, Grzelczak M, Salgueirino-Maceira V, et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles[J]. J Phys Chem B,2005,109(41):19060.
23 Faivre D. Formation of magnetic nanoparticle chains in bacterial systems[J]. MRS Bull,2015,40(6):509.
24 Banerjee I, Yu L, Shima M, et al. Magnetic nanotube fabrication by using bacterial magnetic nanocrystals[J]. Adv Mater,2005,17(17):1128.
25 Benkoski J, Deacon R, Land H, et al. Dipolar assembly of ferromagnetic nanoparticles into magnetically driven artificial cilia[J]. Soft Matter,2009,6(6):602.
26 Liu Q, Shen S, Zhou Z, et al. A facile route to synthesis of superparamagnetic Fe3O4-PDVB nanoworms[J]. Mater Lett,2009,63(30):2625.
27 Keng P, Kim B, Shim I, et al. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires[J]. ACS Nano,2009,3(10):3143.
28 Zhou J,Meng L,Feng X,et al.One-pot synthesis of highly magnetically sensitive nanochains coated with a highly cross-linked and biocompatible polymer[J]. Angew Chem Int Ed,2010,49(45):8476.
29 Zhang Z, Duan H, Li S, et al. Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials[J]. Langmuir,2010,26(9):6676.
30 Zhai T, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection[J]. Chem Soc Rev,2011,40(5):2986.
31 Tiwari J, Tiwari R, Kim K. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices[J]. Prog Mater Sci,2012,57(4):724.
32 Raula M, Rashid M, Lai S, et al. Solvent-adoptable polymer Ni/NiCo alloy nanochains: Highly active and versatile catalysts for va-rious organic reactions in both aqueous and nonaqueous media[J]. ACS Appl Mater Interfaces,2012,4(2):878.
33 Zhu Z, Liu W, Li Z, et al. Manipulation of collective optical activity in one-dimensional plasmonic assembly[J]. ACS Nano,2012,6(3):2326.
34 Ge J, Hu Y, Yin Y. Magnetically induced colloidal assembly into field-responsive photonic structures[J]. Nanoscale,2011,3(1):177.
35 Mahdi Mashkour, Tsunehisa Kimura, Fumiko Kimura,et al. One-dimensional core-shell cellulose-akaganeite hybrid nanocrystals: Synthesis, characterization, and magnetic field induced self-assembly[J]. RSC Adv,2014,4,52542.
36 Wang H, Chen Q, Sun Y, et al. Synthesis of superparamagnetic colloidal nanochains as magnetic-responsive bragg reflectors[J]. J Phys Chem C, 2010, 114(46): 19660.
37 Park J,Maltzahn G, Zhang L, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging[J]. Adv Mater,2008,20(9):1630.
38 Park J, Maltzahn G, Zhang L, et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting[J]. Small,2009,5(6):694.
39 Yin M, Wang M, Miao F, et al. Water-dispersible multiwalled carbon nanotube/iron oxide hybrids as contrast agents for cellular magnetic resonance imaging[J]. Carbon,2012,50(6):2162.
40 Allan I,Christensen G,Bæk K,et al.Photodegradation of PAHs in passive water samplers[J]. Marine Pollution Bull,2016,105(1):249.
41 Chong M, Jin B, Chow C, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water Res,2010,44(10):2997.
42 Yin L, Zhang L, Dai Y, et al. Design of photocatalysts for removal of contaminations in water[J]. Nanosci Nanotechnol—Asia,2012,2(2):103.
43 Liu Y, Zhou L, Hu Y, et al. Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment[J]. J Mater Chem,2011,21(45):18359.
44 Li C, Tan J, Fan X, et al. Magnetically separable one dimensional Fe3O4/P(MAA-DVB)/TiO2 nanochains: Preparation, characterization and photocatalytic activity[J]. Ceram Int,2015,41(3):3860.
45 Zhang W, Si X, Liu B, et al. Synthesis of 1D Fe3O4/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in ca-talytic reaction and drug delivery[J]. J Colloid Interface Sci,2015,456:145.
[1] 薛敏, 芦卓妍, 俞露露, 丁瑶, 陈茎. 基于芳香羧酸配体的有机凝胶、金属凝胶的制备及流变性能[J]. 材料导报, 2025, 39(3): 23090162-6.
[2] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[3] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[4] 秦肖雲, 邵文龙, 田宽, 姜利英, 罗聃. 纳米粒子自组装超结构的制备及基于构效关系的性能[J]. 材料导报, 2023, 37(17): 21120161-12.
[5] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[6] 刘恒昌, 陈凯. 两面神胶束的构筑及应用[J]. 材料导报, 2023, 37(10): 21120086-8.
[7] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[8] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[9] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[10] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[11] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[12] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[13] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[14] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[15] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed