Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 454-461    https://doi.org/10.11896/cldb.201903012
  无机非金属及其复合材料 |
自组装技术在特殊形貌无机纳米材料制备中的作用
陈娟, 江琦
华南理工大学化学与化工学院,广州 510640
The Role of Self-assembly Technology in the Preparation of Inorganic Nanomaterials with Special Morphology
CHEN Juan, JIANG Qi
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 3313KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前无机纳米材料的研究主要集中于低维无机纳米材料的制备,如纳米颗粒、纳米纤维等,其制备方法已相当成熟,而对高维特殊形貌无机纳米材料的研究相对较少。近年来,具有特殊形貌的高维无机纳米材料因独特的结构和表面性质在催化、太阳能电池、传感器、微波吸收、医学等领域展现出优于低维纳米材料的性能,但制备出的材料种类少,形貌不均一,可控性较差。因此,研究者们致力于特殊形貌无机纳米材料生长机理的研究,为材料制备提供有效的理论依据。
制备无机纳米材料的方法有微乳液法、溶胶-凝胶法、电化学法、水/溶剂热法等。其中水/溶剂热法制备的无机纳米材料具有晶粒发育完整、粒度分布均匀、颗粒之间少团聚、原料价格较便宜的优点,因此被广泛应用于特殊形貌无机纳米材料的制备。自组装技术作为超分子领域的新概念,在制备特殊形貌的材料中发挥着重要作用,其主要作用是将低维的纳米结构单元通过氢键、范德华力、静电力等非共价键作用力进行连接而组装成各种复杂的层级结构。
现已通过自组装技术合成了片状、棒状、花状、海绵状、树枝状等特殊形貌无机纳米材料。其中片状材料的生长过程如下:第一步是纳米颗粒的奥斯特瓦尔德熟化过程,第二步是熟化的纳米颗粒定向附着自组装成片状材料。棒状材料的生长过程出现了两种情况,第一种与片状形成过程相同,第二种则是先形成片状,然后片状发生卷曲形成棒状材料,棒状材料再定向附着自组装成长径比不同的棒状材料。花状、海绵状、树枝状等复杂形貌的形成则是基于片状或棒状材料,通过氢键自组装而成。自组装过程会受到表面活性剂或模板剂、溶剂、沉淀剂、酸碱度等因素的影响。研究者们发现利用水热法制备纳米材料时,引入合适的表面活性剂或模板剂,能够促使低维纳米结构单元进行有序自组装而形成结晶度好、尺寸均匀的特殊形貌纳米材料。通过改变表面活性剂或模板剂、溶剂、沉淀剂的种类和剂量及酸碱度等因素,影响纳米颗粒的生长方向、生长速率及颗粒之间的作用力,进而控制产品的形貌和尺寸。
本文对近年来国内外利用自组装技术制备特殊形貌无机纳米材料的研究成果进行了介绍,分析讨论了自组装过程的影响因素,并对自组装制备特殊形貌无机纳米材料的发展方向和应用前景进行了展望,以期为制备性能优越的特殊形貌纳米材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈娟
江琦
关键词:  自组装  特殊形貌  纳米材料  水热法    
Abstract: In recent years, the research of inorganic nanomaterials mainly focuse on the preparation of low-dimensional inorganic nanomaterials, such as nanoparticles and nanofibers, which possess a quite mature preparation method, while the study on high-dimensional inorganic nanomaterials with special morphology is relatively scarce. Recent researches demonstrated that high-dimensional inorganic nanomaterials with special morpho-logy exhibit superior performance than that of the low-dimensional nanomaterials in certain fields, including catalysis, solar cells, sensors, microwave absorption and medicine, due to their unique structure and surface properties, while the types of prepared high-dimensional inorganic nanomaterials are few, their morphologies are non-uniform, and their controllability is poor. Therefore, some researchers committed to the study on the growth mechanism of inorganic nanomaterials with special morphology, and expected to provide an effective theoretical basis for material preparation.
Methods for preparing inorganic nanomaterials include microemulsion method, sol-gel method, electrochemical method, hydrothermal/solvothermal method, etc. Among them, the inorganic nanomaterials prepared via hydrothermal/solvothermal method have a series of advantages including complete crystalline phase, uniform particle size distribution, less agglomeration between particles and cheaper raw materials, thus they are widely adopted. As a new concept in the the field of supermolecular, the self-assembly technique plays a crucial role in preparations of these materials with special morphology. And its main function is to connect and assemble low-dimensional nanostructure units into various complex hierarchical structures by non-covalent bonds such as hydrogen bond, van der Waals force and electrostatic force.
The inorganic nanomaterials with special morphology, including flakes, rods, flowers, sponges and dendrites have been synthesized by self-assembly technology. The growth process of flake-like materials are as follows: the first step is the Osterval ripening process of the nanoparticles, and the second step is directional adhesion and self-assembled of the ripened nanoparticles into the flake-like materials. There are two cases in the growth process of the rod-like materials. One is the same as the flakes forming process, the other one is firstly formed into flakes, and then curl into the rod-like units, finally, the rod-like units are directional adhesion and self-assembled to rod-like materials with different ratios of length to diameter. The formation processes of complex morphologies such as flowers, sponges, dendrites and others are self-assembled via hydrogen bonds on the basis of the formation of the flake-like or rod-like units. The self-assembly process is affected by surfactants or templating agents, solvents, precipitants and pH, etc. The researchers found that the introduction of appropriate surfactants or templating agents when utilizing the hydrothermal method can promote the order self-assembly of low-dimensional nanostructure units to form special morphological nanomaterials with well-crystallized, uniform size. The morphology and size of the product can be controlled by growth direction, growth rate and interaction force between nanparticles which are affected by changing the preparing conditions such as surfactant or template, precipitant type and dosage and pH, etc.
In this paper, the research findings on the synthesis of inorganic nanomaterials with special morphology via self-assembly technology in recent years are reviewed, and the influencing factors of self-assembly process are comprehensively discussed. In addition, the development direction and application of inorganic nanomaterials with special morphology are prospected as well, looking forword to provide a reference for the preparation of special morphology nanomaterials with superior properties.
Key words:  self-assembly    special morphology    nano-material    hydrothermal method
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TB34  
基金资助: 广东省教育部产学研结合项目(20090916)
作者简介:  陈娟,2016年6月毕业于武汉工程大学,获工学学士学位;现为华南理工大学化学与化工学院硕士研究生,在江琦副教授的指导下进行研究。目前主要研究领域是超细功能粉体材料。江琦,华南理工大学化学与化工学院副教授;1994年10月毕业于南开大学,获化学博士学位,1994年10月至1996年10月在华南理工大学进行博士后研究,1996年10月至今,任华南理工大学化学与化工学院副教授。主要从事超细功能粉体材料领域的研究,获发明专利授权十余项;发表研究论文60余篇;有多项成果产业化。ceqjiang@scut.edu.cn
引用本文:    
陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
CHEN Juan, JIANG Qi. The Role of Self-assembly Technology in the Preparation of Inorganic Nanomaterials with Special Morphology. Materials Reports, 2019, 33(3): 454-461.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903012  或          http://www.mater-rep.com/CN/Y2019/V33/I3/454
1 Hu J, Liu Q, Shi L, et al. Applied Surface Science,2017,402,61.
2 Chu J, Lu D, Wang X, et al. Journal of Alloys & Compounds,2017,702,568.
3 Barbillon G, Sandana V E, Humbert C, et al. Journal of Materials Che-mistry C,2017,5(14),3528.
4 Wang Y, Black K C L, Luehmann H, et al. ACS Nano,2013,7(3),2068.
5 Wei F, Deng Y, Lin T, et al. Journal of Colloid & Interface Science,2017,490,834.
6 Sivashanmugan K, Han L, Syu C H, et al. Journal of the Taiwan Institute of Chemical Engineers,2017,75,287.
7 Song H, Wang Y, Wang G, et al. Microchimica Acta,2017,184(9),3399.
8 Zhao B, Shao G, Fan B. Journal of Materials Chemistry A,2015,3(19),10345.
9 Tan X, Wan Y, Huang Y, et al. Journal of Hazardous Materials,2017,321,162.
10 Reshma P C R, Vikneshvaran S, Velmathi S. Journal of Nanoscience & Nanotechnology,2018,18(6),4270.
11 Mirzaee M, Bahramian B, Gholizadeh J, et al. Chemical Engineering Journal,2017,308,160.
12 Li G, Sun Y, Li X, et al. RSC Advances,2016,6(14),11855.
13 Huang P H, Chang S J, Li C C, et al. Electrochimica Acta,2017,228,597.
14 Choi J, Yoo K S, Kim S D, et al. Journal of Industrial & Engineering Chemistry,2017,56,151.
15 Lei Y X, Zhou J P, Wang J Z, et al. Materials & Design,2017,117,390.
16 Liu H, Cai Y, Xu Q, et al. RSC Advances,2017,7(4),2301.
17 Ye Z, Wang T, Wu S, et al. Journal of Alloys & Compounds,2017,690,189.
18 Orsini N J, Babić-Stojić B, Spasojević V, et al. Journal of Magnetism & Magnetic Materials,2017,449,286.
19 Lei Y X, Zhou J P, Wang J Z, et al. Materials & Design,2017,117,390.
20 Wu S, Fu G, Lv W, et al. Small,2018,14(5),1870020.
21 Hong Y, Zhang J, Huang F, et al. Journal of Materials Chemistry A,2015,3(26),13913.
22 Wu Z, Zhong Y, Li J, et al. Journal of Materials Chemistry A,2014,2(31),12361.
23 Ko S H, Lee D, Kang H W, et al. Nano Letters,2011,11(2),666.
24 Zhao B, Ke X K, Bao J H, et al.Journal of Physical Chemistry C,2009,113(32),14440.
25 Li H, Meng F, Liu J, et al. Sensors & Actuators B Chemical,2012,166-167(6),519.
26 Kumar R, Singh R K, Vaz A R, et al. ACS Applied Materials & Interfaces,2017,9(10).
27 Ma Y, Huang J, Lin L, et al. Journal of Power Sources,2017,365,98.
28 Liu X W, Pan P, Zhang Z M, et al. Journal of Electroanalytical Chemistry,2016,763,37.
29 Zhang H, Yang D, Ji Y, et al. Journal of Physical Chemistry B,2004,108(4),1179.
30 Dai Z R, Pan Z W, Wang Z L. Solid State Communications,2001,118(7),351.
31 Zhang H, Yang D, Ji Y, et al. Journal of Physical Chemistry B,2004,108(13),3955.
32 Pacholski C, Kornowski A, Weller H. Solid State Communications,2001,118(7),351.
33 Chemseddine A, Moritz T. Cheminform,1999,30(14),235.
34 Wu X J, Wei Z Q, Yang X H, et al. Journal of Synthetic Crystals,2012,41(4),962(in Chinese).
武晓娟,魏智强,杨晓红,等.人工晶体学报,2012,41(4),962.
35 Thanh-Dinh Nguyen, Driss Mrabet, Trong-On Do. Journal of Physical Chemistry C,2016,112(39),15226.
36 Jia S, Zheng H, Sang H, et al. Journal of Synthetic Crystals,2013,5(20),10346.
37 Zhong Y, Yang Y, Ma Y, et al. Chemical Communications,2013,49(88),10355.
38 Bell T E, Gonzálezcarballo J M, Tooze R P, et al. RSC Advances,2017,7(36),22369.
39 Chen X Y, Lee S W. Chemical Physics Letters,2007,438(4),279.
40 Bokhimi X, Toledo-Antonio J A, Guzmán-Castillo M L, et al. Journal of Solid State Chemistry,2001,159(1),32.
41 Hou H W, Xie Y, Yang Q, et al. Nanotechnology,2005,16(6),741.
42 Li F, Du X Y, Xu K, et al. Rare Metal Materials and Engineering,2012,41(4),707 (in Chinese).
李芳,杜雪岩,徐凯,等.稀有金属材料与工程,2012,41(4),707.
43 Jiang H, Hu J Q, Gu F, et al. Journal of Inorganic Materials,2009,24(1),69(in Chinese).
江浩,胡俊青,顾峰,等.无机材料学报,2009,24(1),69.
44 Wang J, Xue C, Zhu P. Materials Letters,2017,169,400.
45 Lv X, Liu X, Sun Q, et al. Ceramics International,2017,43,3306.
46 Zanganeh S, Kajbafvala A, Zanganeh N, et al. Applied Physics A,2010,99(1),317.
47 Li G, Liu Y, Liu D, et al. Materials Research Bulletin,2010,45(10),1487.
48 Tang H T, Chen G H. Materials Review,2006,20(2),102(in Chinese).
唐海涛,陈国华.材料导报,2006,20(2),102.
49 Ma Y W, Xiao L Y, Yan L G. Chinese Science Bulletin,2006,51(24),2825(in Chinese).
马衍伟,肖立业,严陆光.科学通报,2006,51(24),2825.
50 Wang M, He L, Yin Y. Materials Today,2013,16(4),110.
51 Liu M, Lagdani J, Imrane H, et al. Applied Physics Letters,2007,90(10),2418.
52 Park J I, Jun Y W, Choi J S, et al. Chemical Communications,2007,47(47),5001.
53 Wang H, Chen Q W, Sun L X, et al. Langmuir,2009,25(12),7135.
54 Yang P,Yu M, Fu J, et al. Journal of Alloys & Compounds,2017,721,449.
55 Liu P, Xu Y, Zhu K, et al. Journal of Materials Chemistry A,2017,5(18),8307.
56 Fei J, Zhao J, Zhang H, et al. Journal of Colloid & Interface Science,2015,490(5),621.
57 Zhao B, Shao G, Fan B, et al. Journal of Materials Chemistry A,2015,3(19),10345.
58 Yang J, Wang X, Xia R, et al. Materials Letters,2016,182,10.
59 Wang X, Shi G, Shi F N, et al. RSC Advances,2016,6(47),40844.
60 Feng Y, Lu W, Zhang L, et al. Crystal Growth & Design,2012,8(4),1426.
61 Xu B, Wang J, Yu H, et al. Journal of Environmental Sciences,2011,23(11),S49.
62 Zhang Z, Shao X, Yu H, et al. Chemistry of Materials,2005,17(2),332.
63 Tang Z, Liang J, Li X, et al. Journal of Solid State Chemistry,2013,202,305.
64 Sheldon R. Chemical Communications,2001,23(23),2399.
65 Olivier-Bourbigou H, Magna L, Morvan D. Applied Catalysis A General,2010,41(23),1.
66 Berthod A, Ruiz-ángel M J, Carda-Broch S. Journal of Chromatography A,2008,1184,6.
67 Wang J F, Li C X, Wang Z H, et al. Fluid Phase Equilibria,2007,255(2),186.
68 Liu S, Zeng W, Chen T, et al. Physica E,2017,85,13.
69 Shi X L, Cao M S, Yuan J, et al. Applied Physics Letters,2009,95(16),477.
70 Tian Q, Tang M, Sun Y, et al. Advanced Materials,2011,23(31),3542.
71 Sarkar A, Maity S, Chankraborty P, et al. Materials Today Proceedings,2017,4(9),10367
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[7] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[8] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[11] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[12] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[13] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[14] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[15] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed