Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2602-2609    https://doi.org/10.11896/cldb.18090229
  高分子与聚合物基复合材料 |
功能型酪素基复合材料的研究进展
安文1,2,马建中1,2,徐群娜1,2
1.陕西科技大学轻工科学与工程学院,国家轻工化学实验工程示范中心,西安 710021
2.陕西农产品加工技术研究所,西安 710021
Research Progress on Functional Casein-based Composites
AN Wen1,2, MA Jianzhong1,2, XU Qunna1,2
1.National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021
2.Shaanxi Research Institute of Agricultural Products Processing Technology, Xi’an 710021
下载:  全 文 ( PDF ) ( 2013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 酪素作为一种天然产物蛋白质,既可以溶于酸也可以溶于碱。酪素溶解在氨水中所形成的膜不易溶于水,酪素和硼砂形成的溶液耐贮存且具有抗腐败的作用,因此,在实际操作中通常采用硼砂和氨水来溶解酪素。然而,单纯溶解酪素已不能满足现代工业的需求,为更好地应用于现代工业领域,需要对酪素进行一定程度的功能化改性。一般情况下,相比于未改性的酪素,改性酪素具有以下优点:(1)耐水性能更高;(2)成膜柔韧性更高;(3)耐微生物稳定性更高;(4)具有自清洁性、抗紫外性能和药物缓释等特殊性能。
初期,多数研究者们通过引入聚合物单体来对酪素进行改性,以期提高酪素的耐水性或成膜性能。但随着科技的发展,人们对功能化产品的需求日益增大。为了赋予酪素特殊的功能,近几年有相关研究者采用无机纳米粒子对酪素进行改性,并采用不同的方法在酪素体系中引入不同的纳米粒子对其进行改性,使纳米粒子赋予酪素基体特殊的功能。
截至目前,向酪素中引入纳米氧化锌(ZnO)、纳米二氧化钛(TiO2)和纳米四氧化三铁(Fe3O4)等纳米粒子来改性酪素的研究已取得了初步成功,这些纳米粒子的引入可赋予酪素体系抗菌、自清洁和缓释等特殊性能。其中,采用单原位聚合法将纳米ZnO引入己内酰胺改性酪素的体系中,制得酪素基纳米ZnO复合乳液并将其应用于皮革涂饰,可赋予体系一定的抗菌性能;采用双原位聚合法将纳米TiO2引入聚丙烯酸酯改性酪素体系中,制得酪素基纳米TiO2复合乳液并将其应用于皮革涂饰,可赋予体系自清洁性能;通过设计微胶囊结构,将纳米Fe3O4包覆在酪素胶束中,在外加磁场的作用下,应用到可控药物释放领域可赋予体系缓释功能。此外,还可在酪素体系中引入氧化石墨烯(GO)或蒙脱土(MMT)等纳米材料,赋予体系不同的特殊功能,使其应用更加广泛。
本文归纳了功能化改性酪素和酪素基复合材料的研究进展,分别就聚合物和无机纳米粒子对酪素的改性方法进行介绍,分析了自1993年以来改性酪素产品在各个行业的应用,同时对酪素今后的发展趋势进行了展望,为研发更多适用于不同领域的高性能功能型酪素产品提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安文
马建中
徐群娜
关键词:  酪素  改性  纳米材料  功能化    
Abstract: As a natural protein, casein can be dissolved in both acid and alkali medium. Since the film formed by casein dissolving in ammonia water are resistant to water and spoilage, respectively. So borax and ammonia water are usually used to dissolve casein in industry. However, pristine casein can’t meet the needs of modern industry. Therefore, modification of casein is required. In general, modified casein has the following advantages over unmodified casein: (ⅰ) improved water resistance, (ⅱ) enhanced flexibility of films, (ⅲ) improved microbial stability, (ⅳ) special functions, such as self-cleaning, anti-ultraviolet performance and controlled releasing behaviors.
In the early days, casein was modified by introducing polymer monomers to improve its film water resistance or film-forming properties. Howe-ver, with the increasing demand for functionalized products, researchers attempted employing inorganic nanoparticles to modify casein in order to give the special functionality to casein film recently years. Different methods have been used to introduce various nanoparticles in casein system for special functions.
Up to now, the successful examples of nanoparticle-modified casein involved nano zinc oxide (ZnO), nano titanium dioxide (TiO2) and nano ferric oxide (Fe3O4), which can endow casein matrix with antibacterial, self-cleaning and slow releasing properties. Such as, nano-ZnO was introduced into the caprolactam-modified casein matrix by single in-situ polymerization method to prepare casein-based nano-ZnO composite emulsion, which was applied to leather finishing and showed obvious antibacterial properties. Nano-TiO2 was introduced into the polyacrylate-modified casein system by double in-situ polymerization, and the casein-based nano-TiO2 hybrid emulsion applied to leather could endow the system with self-cleaning performance. Nano-Fe3O4 was also designed as a microcapsule structure and coated on casein micelles. Under the action of external magnetic field, it can be applied to the controlled drug release field to give the system a sustained release function. In addition, graphene oxide (GO), montmorillonite (MMT), etc. could also be introduced into the casein system to offer different special functions, which make it more widely available.
This article summarizes the research progress on modification methods and functional modification of casein-based composites, mainly introduces casein modified by polymer and inorganic nanoparticles. The application of casein products in various industries since 1993 is also described. At the same time, the development trend of modified casein in the future is prospected, which will provide reference for obtaining functio-nalized casein products in various fields.
Key words:  casein    modified    nano materials    functionalization
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TQ630.4+3  
  TQ314.1  
基金资助: 国家重点研发计划(2017YFB0308602);陕西省重点科技创新团队(2013KCT-08);陕西省高校科协人才托举计划项目(20180416)
作者简介:  安文,2017年6月毕业于宝鸡文理学院,获得理学学士学位。现为陕西科技大学轻工科学与工程学院硕士研究生,在马建中教授的指导下进行科学研究。目前主要从事天然产物基有机-无机纳米复合材料的研究。
建中,现任陕西科技大学校长,博士研究生导师。国务院学位委员会轻工技术与工程学科评议组召集人,主持国家重点研发计划、973预研计划、863计划、国家自然科学基金重点项目及横向项目50余项,获得国家科技进步二等奖1项,国家技术发明二等奖1项,何梁何利基金产业创新奖1项(第一完成人),主要研究方向有:(1)水性高分子的设计与合成,(2)有机/无机纳米复合材料的关键技术,(3)轻纺化学产品的技术与应用。出版著作8部,申请PCT国际发明专利10项;授权国家发明专利80余项,实用新型专利4项;发表学术论文400余篇(SCI/EI 200余篇,ESI高被引3篇)。
引用本文:    
安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
AN Wen, MA Jianzhong, XU Qunna. Research Progress on Functional Casein-based Composites. Materials Reports, 2019, 33(15): 2602-2609.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090229  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2602
[1] Silva J V C, Balakrishnan G, Schmitt C, et al. Food Hydrocolloids,2018,82,258.
[2] Gao Z B. In: Tannery industrial wastewater treatment, Chemical Industry Press, China,2001.
高忠柏.制革工业废水处理,化学工业出版社,2001.
[3] Nawamawat K, Sakdapipanich J T, Ho C C, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2011,390(1),157.
[4] Shen X Q, Lan Y J, Xu X H. West Leather,2009,31(13),30(in Chinese).
申晓庆,兰云军,许晓红.西部皮革,2009,31(13),30.
[5] Dai H, Zhang Z C. Leather Science and Engineering,1998(3),47(in Chinese).
戴红,张宗才.皮革科学与工程,1998(3),47.
[6] Li J, Yu X J. Leather Chemicals,1998(6),19(in Chinese).
李继,余学军.皮革化工,1998(6),19.
[7] Rochette C N, Crassous J J, Drechsler M, et al. Langmuir,2013,29(47),14655.
[8] Wu L M, Liao S Q, Qu P, et al. Advanced Materials Research,2014,1052,231.
[9] Jiang S J, Zhao X H. International Dairy Journal,2011,21(4),198.
[10] Liu J, Lu R R. Food and Fermentation Industries,2008,34(10),49(in Chinese).
刘娟,卢蓉蓉.食品与发酵工业,2008,34(10),49.
[11] Mohan D, Ganga R, Rajadurai S. Journal of Macromolecular Science: Part A-Chemistry,1983,20(2),201.
[12] Yang Z S, Sheng K M. Leather and Chemicals,1990(6),6(in Chinese).
杨宗邃,盛克敏.中国皮革,1990(6),6.
[13] Somanathan N. Journal of Applied Polymer Science,1996,62(9),1407.
[14] Meng H, Tang L, Zheng W H. Lether Chemicals,2003,20(4),21(in Chinese).
孟辉,唐丽,郑文慧.皮革化工,2003,20(4),21.
[15] Xu W G, Yang W T, Wang X. Lether Chemicals,1997(2),14(in Chinese).
徐卫国,杨文堂,王新.皮革化工,1997(2),14.
[16] Dai H, Zhang Z C. Leather Science and Engineering,1998(3),47(in Chinese).
戴红,张宗才.皮革科学与工程,1998(3),47.
[17] Dong Q Z, Hsieh Y L. Journal of Applied Polymer Science,2000,77,2543.
[18] Man D L, Lu M, Huang Y P, et al. Polyurethane Industry,2014(4),27(in Chinese).
满德龙,卢敏,黄毅萍,等.聚氨酯工业,2014(4),27.
[19] Zhang Y X, Ma J Z, Xu Q N. Journal of Shaanxi University of Science & Technology,2017,35(3),42(in Chinese).
张元霞,马建中,徐群娜.陕西科技大学学报,2017,35(3),42.
[20] Lakshminarayana Y, Rami Reddy C, Parthasarathy K, et al. Journal-American Leather Chemists Association,1984,79(10),398.
[21] Zhu J M, Li P. Jounal of Polymer Science,2003,41,3346.
[22] Fan L H, Tang L, Rong X, et al. Leather Chemicals,2004,21(6),23(in Chinese).
樊丽辉,唐丽,荣星,等.皮革化工,2004,21(6),23.
[23] Raval D K, Narola B N, Patel A J. Journal of Applied Polymer Science,2010,98(2),531.
[24] Fan L H, Liu J, Zhou M, et al. Leather Chemicals,2006,23(2),25(in Chinese).
樊丽辉,刘杰,周明,等.皮革化工,2006,23(2),25.
[25] Li Y T, Wang T P, Yang J S. China Leather,2007(7),37(in Chinese).
李运涛,王廷平,杨军胜.中国皮革,2007(7),37.
[26] Ma J Z, Li N, Bao Y. China Plastics,2009(6),54(in Chinese).
马建中,李娜,鲍艳.中国塑料,2009(6),54.
[27] Fan B B, Studies on hydrophobic modified using polyurethane microparticle. Master’s Thesis, Central China Normal University, China,2012(in Chinese).
范冰冰.以聚氨酯微球改性制备疏水热塑性干酪素的研究.硕士学位论文,华中师范大学,2012.
[28] Liu Q, Shen Y D, Fei G Q, et al. Polymer Materials Science & Enginee-ring,2011,27(7),151(in Chinese).
刘钦,沈一丁,费贵强,等.高分子材料科学与工程,2011,27(7),151.
[29] Gan C F, Xu Q N, Zhou J H, et al. China Leather,2013,42(5),37(in Chinese).
甘长凤,徐群娜,周建华,等.中国皮革,2013,42(5),37.
[30] Qiao L H, Ma J Z, Xu Q N, et al. China Leather,2013,42(3),30(in Chinese).
乔滢寰,马建中,徐群娜,等.中国皮革,2013,42(3),30.
[31] Duan J C, Tian X H, Sun J X, et al. China Synthetic Rubber Industry,2017,40(3),167(in Chinese).
段俊超,田晓慧,孙金煜,等.合成橡胶工业,2017,40(3),167.
[32] Wang G G, Liu J, Yang J T, et al. Agricultural Development and Equipments,2017(5),73(in Chinese).
王刚刚,刘杰,杨继涛,等.农业开发与装备,2017(5),73.
[33] Shah K J, Shukla A D, Shah D O, et al. Polymer,2016,97,525.
[34] Hojiyev R, Ulcay Y, elik M S. Applied Clay Science,2017,146,548.
[35] Shah K J, Mishra M K, Shukla A D, et al. Journal of Colloid & Interface Science,2013,407(10),493.
[36] Liao R J, Liu T, Zhang F Z, et al. Transactions of China Electrotechnical Society,2015,30(1),220(in Chinese).
廖瑞金,刘团,张福州,等.电工技术学报,2015,30(1),220.
[37] Xing J, Deng B Y, Liu Q S, et al. China Synthetic Fiber Industry,2014,37(5),6(in Chinese).
邢剑,邓炳耀,刘庆生,等.合成纤维工业,2014,37(5),6.
[38] Liu J, Zhuo Y, Li Q. Ferroelectrics,2018,530,39.
[39] Li J, Cai J, Zhong L, et al. Applied Clay Science,2018,77,2598.
[40] Alexandre M, Dubois P. Materials Science & Engineering R,2000,28(1),1.
[41] Zhang K, Wang L, Wang F, et al. Journal of Applied Polymer Science,2004,91(4),2649.
[42] Agag T, Koga T, Takeichi T. Polymer,2001,42,3399.
[43] Ge J F, Guo B C, Kang Q D, et al. China Adhesives,2005(8),23(in Chinese).
葛建芳,郭保春,康齐德,等.中国胶粘剂,2005(8),23.
[44] Lin H, Xu S, Wang X, et al. Small,2013,9(15),2585.
[45] Yang X, Zhao L Y, Tang J T, et al. Journal of Biomedical Engineering,2014,31(2),462.
[46] Feng J. Synthesis and surface modification of core-shell gold nanoparticle and its bioapplication, Master’s Thesis, Southeast University, China,2014(in Chinese).
冯杰.核壳结构的金纳米颗粒的制备、表面修饰及其在生物医学中的应用.硕士学位论文,东南大学,2014.
[47] Liu Y, Guo R. Journal of Colloid and Interface Science,2009,332,265.
[48] Castaeda M E, Escosura-Muiz A D, González-Ortiz G, et al. Biosensors and Bioelectronics,2013,40,271.
[49] Wu Z, Tan D, Tian K, et al. Journal of Physical Chemistry C,2017,121(29),15784.
[50] Sangeetha J, Philip J. Colloids and Surfaces A: Physico-chemical and Engineering Aspects,2012,406,52.
[51] Huang J, Wang L Y, Lin R, et al. ACS Applied Materials & Interfaces,2013,5,4632.
[52] Xi L, Zhang Y W. Silicone Material,2017,31(1),33(in Chinese).
席龙,张幼维.有机硅材料,2017,31(1),33.
[53] Song N, Yang Y W. Chemical Society Reviews,2015,44(11),3474.
[54] Zhang D, Li W, Ma Z. Biosensors & Bioelectronics,2018.
[55] Wang X, Wang P, Jiang Y, et al. Composites Science and Technology,2014,104,1.
[56] Si Y, Guo Z. Chemistry Letters,2015,44(7),874.
[57] Zhang S W. Preparation of polystyrene/silica nanocomposite latex and its nanocomposite materials. Master’s Thesis, Changchun University of Technology, China,2017(in Chinese).
张申伟.聚苯乙烯/二氧化硅纳米复合乳液的合成及其复合材料的制备.硕士学位论文,北京服装学院,2017.
[58] Tian B, Liu S, Wu S, et al. Colloids and Surfaces B: Biointerfaces,2017,154,287.
[59] Zheng W, Zhu Y, Na B, et al. Composites Science and Technology,2017,144,178.
[60] Hu J, Ma J Z, Deng W J. Materials Letters,2008,62,2931.
[61] Xu Q, Ma J, Zhou J, et al. Chemical Engineering Journal,2013,228(28),281.
[62] Zhang F, Ma J Z, Xu Q N. In: Abstract of the 30th Annual Academic Meeting of the Chinese Chemical Society-31st Session: Colloid and Interface Chemistry. Hangzhou,2016,pp.1.
[63] Mohamad Alosfur F K, Ridha N J, Mhh J, et al. Nanotechnology,2018,29(14),145707.
[64 ] Fujishima A, Honda K. Nature,1972,37,238.
[65] Ryu J, Kim K Y, Hahn B D, et al. Catalysis Communications,2009,10(5),596.
[66] Yu H. Progress in Chemistry,2009,75(13),4653.
[67] Liang F, Kelly T L, Luo L B, et al. ACS Applied Materials & Interfaces,2012,4(8),4177.
[68] Sharma S D, Saini K K, Kant C, et al. Applied Catalysis B Environmental,2008,84(1),233.
[69] Liu T, Cao B, Wang C. New Technology & New Process,2010,93(3),735.
[70] Xu Q, Fan Q, Ma J, et al. Progress in Organic Coatings,2016,99,223.
[71] Zhao C Y, Xiang W F, Zhang J Q, et al. Micronanoelectronic Technology,2015(12),757(in Chinese).
赵重阳,相文峰,张家奇,等.微纳电子技术,2015(12),757.
[72] Dutta R K, Nenavathu B P, Gangishetty M K, et al. Colloids & Surfaces B Biointerfaces,2012,94(6),143.
[73] Chaudhary S, Umar A, Bhasin K K, et al. Materials,2018,11(2),287
[74] Ma H, Williams P L, Diamond S A. Environmental Pollution,2013,172,76.
[75] Chen X Y, Qian X R. China Pulp & Paper,2010,29(5),30.
[76] Li Y, Zhang W, Niu J F, et al. ACS Nano,2012,6(6),5164.
[77] Abdulrahman S H, Chandrasekaran K, Seemaisamy S, et al. Journal of Materials Chemistry B,2013,1,5956.
[78] Emami-Karvani Z, Chehrazi P. African Journal of Microbiology Research,2011,5,1368.
[79] Wang Y N, Ma J Z, Xu Q N, et al. Materials & Design,2017,113,240.
[80] Wang Y N. Fabrication and performance of antimicrobial casein-based nano ZnO composite for leather finishing. Master’s Thesis, Shaanxi University of Science and Technology, China,2017(in Chinese).
王雅楠.抗菌型酪素基纳米ZnO复合皮革涂饰材料的合成与性能研究.硕士学位论文,陕西科技大学,2017.
[81] Rao C N, Biswas K, Subrahmanyam K S, et al. Journal of Materials Chemistry,2009,19(17),2457.
[82] Wei L F, Zhang W B, Ma J Z, et al. Carbon,2019,149,679.
[83] Ying H, Wang Z Y, Guo Z Y, et al. Acta Physico-Chimica Sinica,2011,27(6),1482(in Chinese).
应红,王志永,郭政铎,等.物理化学学报,2011,27(6),1482.
[84] Sun Y, Yang S, Chen Y, et al. Environmental Science & Technology,2015,49(7),4255.
[85] Hui L, Lu D, Zhang Z, et al. Journal of Materials Science,2015,50(8),3207.
[86] Eda G, Fanchini G, Chhowalla M. Nature Nanotechnology,2008,3(5),270.
[87] Qin Y, Xin Z, Dai X, et al. Small,2016,126(4),12522.
[88] Hinde R A, Spencer-Booth Y. Journal of Power Sources,2015,278(4),218.
[89] Dashairya L, Rout M, Saha P. Advanced Composites & Hybrid Materials,2018,1(1),1.
[90] Roya Kabiri, Hassan Namazi. Cellulose,2014,21,3527.
[91] Maddinedi S B, Mandal B K, Vankayala R, et al. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy,2014,126,227.
[92] Qiu C C, Lyu S H, Dong W, et al. West Leather,2013,35(18),32(in Chinese).
邱超超,吕生华,董文,等.西部皮革,2013,35(18),32.
[93] Xu Q N. Synthesis, structure and properties of casein-based emulsifier-free composite emulsion with core-shell structure. Ph.D. Thesis, Shaanxi University of Science and Technology, China,2018(in Chinese).
徐群娜.酪素基无皂核壳复合乳液的合成、结构与性能研究.博士学位论文,陕西科技大学,2013.
[94] Motoki M, Aso H, Seguro K. Agricultural Biology and Chemistry,1987,51(1),993.
[95] Diak O A, Bani-Jaber A, Amro B, et al. Food & Bioproducts Processing,2007,85(3),284.
[96] Millar F C, Corrigan O I. Drug Development Communications,2008,17(12),1593.
[97] Millar F C, Corrigan O I. International Journal of Pharmaceutics,1993,92(1),97.
[98] Wang L D, Du F G, Shi J P, et al. China Adhesives,2006,15(3),48(in Chinese).
王良东,杜风光,史吉平,等.中国胶粘剂,2006,15(3),48.
[99 ] Shi S L. Chemistry and Adhesion,2004(1),45(in Chinese).
石松林.化学与粘合,2004(1),45.
[100] Jiang X Y. Advances in Fine Petrochemicals,2005,28(11),88(in Chinese).
蒋小友.精细石油化工进展,2005,28(11),88.
[101] Niu B, Guang Z Y, Wang A X. China Adhesives,2008,17(5),20(in Chinese).
牛犇,广忠勇,王爱霞.中国胶粘剂,2008,17(5),20.
[102] Zhou X L, Cao C Q. Journal of Qingdao University of Science and Technology (Natural Science Edition),2006,27(6),515(in Chinese).
周学林,曹长青.青岛科技大学学报(自然科学版),2006,27(6),515.
[103] Zeng X J, Xu G. China Adhesives,2002,11(6),25(in Chinese).
曾小君,徐刚.中国胶粘剂,2002,11(6),25.
[104] Zheng M Z. A brief analysis of the painting techniques of balthus—The use of casein tempera. Master’s Thesis, Beijing Institute of Fashion, China,2018(in Chinese).
郑美子.浅析巴尔蒂斯的绘画技法——干酪素坦培拉的运用.硕士学位论文,北京服装学院,2018.
[105] Wang S T, Zhang Q S, Li H B. China Adhesives,2000,9(2),19(in Chinese).
王世泰,张庆思,李洪宝.中国胶粘剂,2000,9(2),19.
[106] Seoane B, Castellanos S, Dikhtiarenko A, et al. Coordination Chemistry Reviews,2016,307,147.
[107] Nandasiri M I, Jambovane S R, Mcgrail B P, et al. Coordination Che-mistry Reviews,2016,311,38.
[108] Cui Y, Li B, He H, et al. Accounts of Chemical Research,2016,49(3),483.
[109] Pyun J, Matyjaszewski K. Macromolecules,2000,33(1),217.
[110] Wang W P, Fei M, Jie X X, et al. Polymer Bulletin,2010,65(9),863.
[111] Jian W, Qing G, Patrick T M. Macromolecules,2010,43(18),7637.
[112] Stefano T, Marinella L. Macromolecules,2005,38(13),5569.
[113] Ajaya K N, Douglas A M, Joshua U O. Macromolecules,2006,39(20),7037.
[114] Ruben Y K, Henryk J S, Jaco D G, et al. Biomacromolecules,2006,7(1),215.
[115] Zhang Q H, He H, Xi K, et al. Macromolecules,2011,44(3),550.
[116] Ravanfar R, Celli G B, Abbaspourrad A. ACS Applied Materials & Interfaces,2018,10(6),6046.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[4] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[5] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[6] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[7] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[8] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[9] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[10] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[11] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[12] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[13] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[14] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[15] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed