Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 754-760    https://doi.org/10.11896/cldb.201905005
  材料与可持续发展(二)——材料绿色制造与加工* |
二维层状材料麦羟硅钠石的研究进展
戈明亮1,2,3, 席壮壮1, 梁国栋2
1 华南理工大学,聚合物成型加工工程教育部重点实验室,聚合物新型成型装备国家工程研究中心,广州 510640;
2 中山大学聚合物复合材料及功能材料教育部重点实验室,广州 510640;
3 贵州民族大学材料科学与工程学院,贵阳 550000
A State-of-the-art Review on the Study of Two-dimensional Layered MaterialMagadiite
GE Mingliang1,2,3, XI Zhuangzhuang1, LIANG Guodong2
1 National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640;
2 Key Laboratory of Polymeric Composite & Functional Materials of Ministry of Education,Sun Yat-sen University, Guangzhou 510640;
3 School of Material Science and Engineering, Guizhou Minzu University, Guiyang 550000
下载:  全 文 ( PDF ) ( 2268KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维层状材料硅酸盐是硅、氧与其他化学元素等结合而成的化合物的总称。其以硅氧四面体为基本结构, 根据不同的配合形成了各类的硅酸盐,其种类繁多、熔点高、比表面积大、抗蠕变性良好以及可插层,且具有优异的耐腐蚀性、热稳定性和化学稳定性,被广泛应用于化工、建材、耐火材料、陶瓷、造纸、橡胶、塑料、医药、农药、纺织、化妆品、国防和环保等领域。
麦羟硅钠石是一种水合硅钠石,它属于层状硅酸盐,结构式为Na2Si14O29·nH2O,作为一种新型的层状硅酸盐材料,相比于蒙脱石等其他层状硅酸盐,它的活性Si-OH位于层间的表面上,有利于其功能化改性,且显著提高了层间电荷密度,从而提高了其离子交换能力。麦羟硅钠石具有规整的层板结构和可调控的层间距,可以在层间引入不同功能的分子,作为组装多功能复合材料的基础材料。麦羟硅钠石是纯硅体系,具有很好的生物相容性,单个片层较厚(1.12 nm),结构稳定性好,可以人工合成,通过控制合成工艺,可以得到高纯度的产物,且价格低廉,具有市场竞争优势。
到目前为止,麦羟硅钠石的制备主要是通过水热法人工合成,硅源可以为硅藻土、水玻璃、沉淀白炭黑浆料(PPS)、SiO2-NaOH-Na2CO3-H2O体系、硅胶、正硅酸甲酯、正硅酸乙酯等。随着研究的不断深入,制备方法越来越简单,晶型也越来越完善。麦羟硅钠石的改性研究包括有机插层改性、酸化处理和无机改性。此外,由于聚合物/层状硅酸盐复合材料具有常规聚合物复合材料所没有的结构、形态,以及较常规聚合物复合材料更优异的力学性能、耐热性和气体液体阻隔性能等,麦羟硅钠石/聚合物复合材料也得到了广泛的研究。在应用方面,麦羟硅钠石由于具有较高的离子交换量和较大的比表面积,可以作为吸附材料吸附重金属离子和有机染料等。因其层状结构和较大的比表面积,麦羟硅钠石可以作为硅源合成沸石分子筛,其具有较高的水热稳定性和一定的耐酸性。麦羟硅钠石由于化学稳定性及较强的负载能力,可以有效负载催化材料,并使催化材料获得很好的分散效果,增强其催化性能。
为反映当今国内外麦羟硅钠石的研究成果,本文介绍了麦羟硅钠石的结构与性质、制备、改性以及应用等内容。但是目前对于麦羟硅钠石的研究还不够成熟,存在一定的局限性。若将来麦羟硅钠石能够在生产实践中得到应用,其前景将十分广阔。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戈明亮
席壮壮
梁国栋
关键词:  麦羟硅钠石  有机插层  酸化处理  无机改性  吸附  催化材料    
Abstract: The two-dimensional layered silicate is a general name of a compound in which silicon, oxygen and other chemical elements are combined. Based on the basic structure of silicon-oxy tetrahedron, diverse silicates are formed according to various combinations. Silicate shows a wide variety, high melting point, large specific surface area, favorable creep resistance, easy for intercalation, and excellent corrosion resistance, thermal stability, chemical stability, which enable its wide application in chemical, building materials, refractories, ceramics, paper, rubber, polymer, plastics, pharmaceuticals, pesticides, textiles, cosmetics, defense and environmental protection industry.
Magadiite is a kind of sodium silicate hydrate, which belongs to layered silicate with the structural formula of Na2Si14O29·nH2O. As a novel layered silicate material, magadiite features its active Si-OH located on the interlayers surface, which is more conducive to the functional modification compared with other layered silicate like montmorillonite. In addition, it will significantly increase the interlayer charge density, thus contribute to its ion exchange capacity. Thanks to its regular laminar structure and adjustable interlayer spacing, magadiite can be used as a basic material for the assembly of multifunctional composites by introducing various functional molecules. Magadiite exhibits competitive advantages in market, owing to its favorable biocompatibility, stable structure, thicker monolayer (1.12 nm), moderate price, and the capability for artificial synthesis and generating high purity products with a controlled process.
Up to now, the primary preparation method of magadiite is hydro-thermal synthesis, the possible silicon source include diatomaceous earth, water glass, precipitated silica slurry (PPS), SiO2-NaOH-Na2CO3-H2O system, silica gel, methyl orthosilicate, tetraethylorthosilicate and so forth. The continuous progress of research has brought about more simplified preparation methods and more perfect crystal structure of products. The modification of magadiite includes organic intercalation, acidification treatment and inorganic modification. Besides, magadiite/polymer composites have also received extensively studied because of the unique structure and morphology of polymer/layered silicate composites differed from conventional polymer composites, and superior mechanical properties, heat resistance, gas-liquid barrier. With regard to the application of magadiite, it can be employed as adsorption material to adsorb heavy metal ions and organic dyes because of its higher ion exchange capacity and large specific surface area. Moreover, due to its layered structure and large specific surface area, magadiite can be used as a silicon source for the synthesis of zeolite molecular sieves, which show high hydrothermal stability and acid resistance. In addition, magadiite possesses excellent chemical stability and strong load capacity, which enable it support catalyst effectively and make the catalyst well dispersed so as to increase the catalytic performance.
In order to present the current research of magadiite at home and abroad, this article introduces the structure and properties, preparation, mo-dification and application of magadiite. While, the current researches on magadiite are not mature enough and exist certain limitations. It is believed that the magadiite own a broad prospect, if it can be applied in production practice in the future.
Key words:  magadiite    organic intercalation    acidification treatment    inorganic modification    absorption    catalytic material
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TQ177.1  
基金资助: 广东省自然科学基金项目(2016A030313520);广东省水利科技创新项目(2017-24);广东省普通高校特色创新类项目(自然科学)(2017KTSCX007);中山大学聚合物复合材料及功能材料教育部重点实验室开放基金(PCFM-2017-02)
作者简介:  戈明亮,华南理工大学副教授,2008年博士毕业于华南理工大学,研究方向: 二维层状材料、有机-无机纳米复合材料、功能高分子材料等及其在环境、医药、催化、仿生等领域的应用研究,获授权发明专利8件,发表学术论文近100篇,其中 SCI与EI收录30多篇,发表专著1部,参与教材编写1本。gml@scut.edu.cn
引用本文:    
戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
GE Mingliang, XI Zhuangzhuang, LIANG Guodong. A State-of-the-art Review on the Study of Two-dimensional Layered MaterialMagadiite. Materials Reports, 2019, 33(5): 754-760.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905005  或          http://www.mater-rep.com/CN/Y2019/V33/I5/754
1 Eugster H P. Science,1967,157,1177.
2 Mcatee J, House R, Eugster H P. American Mineralogist,1968,53,2061.
3 Rooney T P, Jones B F, Neal J T. American Mineralogist,1969,54,1026.
4 Peng S, Gao Q M, Wang Q G, et al. Chemistry of Materials,2004,16(13),2675.
5 Thiesen P H, Beneke K, Lagaly G. Journal of Material Chemistry,1985,22,639.
6 Almond G G, Harris R K, Franklin K R. Journal of Materials Chemistry,1997,7(4),681.
7 Wang Z, Pinnavaia T J. Journal of Materials Chemistry,2003,13,2127.
8 Hatsushika T, Takei S, Suzuki T. Journal of Inorganic Materials,1996,3,319.
9 Muraishi H. Nendo Kagaku,1996,36,22.
10 Muraishi H. Nendo Kagaku,1999,38,188.
11 Muraishi H. Nendo Kagaku,2004,44,62.
12 Muraishi H. Nendo Kagaku,2005,44,154.
13 Muraishi H, Matsuo A. Nendo Kagaku,2007,46,61.
14 Homhuan N, Imwiset K, Sirinakorn T, et al. Clay Science,2017,21,21.
15 Rojo J M, Ruiz-Hitzky E, Sanz J. Inorganic Chemistry,1988,27,2785.
16 Schwieger W, Lagaly G. Handbook of Layered Materials, Marcel Dekker Press, USA,2004.
17 Mizukami N, Tsujimura M, Kuroda K, et al. Clays and Clay Minerals,2002,50,799.
18 Ogawa M, Ide Y, Mizushima M. Chemical Conmmunications,2010,46,2241.
19 Ozawa K, Nakao Y, Cheng Z X, et al. Materials Letters,2009,63,366.
20 Ozawa K, Iso F, NakaoY, et al. Journal of the European Ceramic Society,2007,27,2665.
21 Schwieger W, Selvam T, Gravenhorst O, et al. Journal of Physics and Chemistry of Solids,2004,65,413.
22 Ogawa M. Journal of Materials Chemistry,2002,12,3304.
23 Ogawa M, Takizawa Y. Journal of Physical Chemistry B,1999,103,5005.
24 Kharkov B B, Corkery R W, Dvinskikh S V. Langmuir,2014,30,7859.
25 Ruiz-Hitzky E, Rojo J M. Nature,1980,287,28.
26 Mercier L, Facey G A, Detellier C. Journal of the Chemical Society Chemical Communications,1994,18,2111.
27 Fujita I, Kuroda K, Ogawa M. Chemistry of Materials,2005,17,3717.
28 Ide Y, Fukuoka A, Ogawa M. Chemistry of Materials,2007,19,964.
29 Ide Y, Iwasaki Y, Ogawa M. Langmuir,2011,27,2522.
30 Landis M E, Aufdembrink B A, Chu P, et al. Journal of the American Chemical Society,1991,113,3189.
31 Dailey J S, Pinnavaia T J. Chemistry of Materials,1992,4,855.
32 Nunes A R, Mour A O, Prado A G. Journal of Thermal Analysis and Ca-lorimetry,2011,106,445.
33 Benkhatou S, Djelad A, Sassi M, et al. Desalination and Water Treatment,2016,57,9383.
34 Peng S, Gao Q, Du Z, et al. Applied Clay Science,2006,31,229.
35 Paz G L, Munsignatti E C, Pastore H O. Journal of Molecular Catalysis A: Chemical,2016,422,43.
36 Kim S J, Kim M H, Seo G. Research on Chemical Intermediates,2012,38,1181.
37 Sun X, King J, Anthony L J. Chemical Engineering Journal,2009,147,2.
38 Cui M, Zhang Y, Liu X. Microporous and Mesoporous Materials,2014,200,86.
39 Wang Y, Lyu T, Ma Y. Microporous and Mesoporous Materials,2016,228,86
40 Shi Z, Wang Y, Meng C. Microporous and Mesoporous Materials,2013,176,155.
41 Wang Y, Lyu T, Wang H. Microporous and Mesoporous Materials,2015,208,66.
42 Takahashi N, Kuroda K. Chemistry of Materials,2011,21,14336.
43 Kim S J, Lee G, Ryu Y K. Research on Chemical Intermediates,2012,38,1191.
44 Chen Y, Yu G. Clays and Clay Minerals,2013,48,739.
45 Chen Y, Yu G, Li F. Applied Clay Science,2014,88,163.
46 Chen Y, Yu G, Li F. Clays and Clay Minerals,2013.61,26.
47 Lagaly G, Beneke K. American Mineralogist,1975,60,642.
48 Wang Y, Shang Y S, Zhu J, et al. Journal of Chemical Technology and Biotechnology,2009,84,1894.
49 Wang Y R, Wang S F, Chang L C. Applied Clay Science,2006,33(1),73.
50 Kwon O Y, Park K W. Bulletin of the Korean Chemical Society,2004,25(1),25.
51 Kwon O Y, Jeong S Y, Suh J K, et al. Bulletin of the Korean Chemical Society,1995,16(8),737.
52 Kosuge K, Yamazaki A, Tsunashima A, et al. Bulletin of the Chemical Society of Japan,1992,100,326.
53 Feng F X, Balkus K J. Journal of Porous Materials,2003,10(1),5.
54 Ge Mingliang, Chen Meng. Journal of The Chinese Ceramic Society,2013,42(12),1704(in Chinese).
戈明亮,陈萌.硅酸盐学报,2013,42(12),1704.
55 Macedo T R, Airoldi C. Microporous and Mesoporous Materials,2006,94,81.
56 Kooli F, Liu Y. Physical Chemistry Chemical Physics,2009,113,1947.
57 Park K W, Jung J H, Kim S K, et al. Applied Clay Science,2009,46,251.
58 Cai Z D. The templating effect of the macro-molecule during the formation of layered silicate. Master’s Thesis, Dalian University of Technology, China,2012(in Chinese).
蔡子达.大分子在层状硅酸盐中的模板效应研究.硕士学位论文,大连理工大学,2012.
59 Kooli F, Li M, Alshahateet S F, et al. Journal of Physics and Chemistry of Solids,2006,67,926.
60 Bi Y F, Blanchard J, Lambert J F, et al. Chinese Science Bulletin,2010,55(4-5),391(in Chinese).
毕云飞,Blanchard J,Lambert J F,等.科学通报,2010,55(4-5),391.
61 Peng S G, Gao Q M. Chemical Journal of Chinese Universities,2004,25(4),603(in Chinese).
彭淑鸽,高秋明.高等学校化学学报,2004,25(4),603.
62 Wang Z, Lan T, Pinnavaia T J. Chemistry of Materials,1996,8(9),1273.
63 Miyamoto N, Kawai R, Kuroda K, et al. Applied Caly Science,2001,19(1-6),39.
64 Mizukami N, Tsujimura M, Kuroda K, et al. Clays and Clay Minerals,2006,33(1),73.
65 Kwon O Y. Journal of Industrial and Engineering Chemistry,2006,33(1),73.
66 Ogawa M, Ishii T, Miyamoto N, et al. Advanced Materials,2001,13,14.
67 Mitamura Y, Komori Y, Hayashi S, et al. Chemistry of Materials,2001,13,3747.
68 Okutomo S, Kuroda K, Ogawa M. Applied Clay Science,1999,15,253.
69 Steude A, Batenburg L F, Fischer H R, et al. Applied Clay Science,2009,44,95.
70 Kosuge K, Tsunashima A. Langmuir,1996,12,1124.
71 Oliveira M M, Fernandes M M, Fonseca M G. Microporous and Mesoporous Materials,2014,196,292.
72 Kwon O Y, Shin H S, Choi S W. Chemistry of Materials,2000,12,1273.
73 Ko Y, Kim M H, Kim S J, et al. Korean Journal of Chemical Enginee-ring,2001,18(3),392.
74 Superti G B, Oliveira E C, Pastore H O. Chemistry of Materials,2007,19,4300.
75 Yu G S. Study on preparation and luminescent properties of composite based on Ⅱ-Ⅵ semiconductor nanoparticles enclosed in layered silicates. Master’s Thesis, Nanchang University,China,2014(in Chinese).
余根生.Ⅱ-Ⅵ族半导体纳米粒子/层状硅酸盐复合材料的制备及发光性质的研究.硕士学位论文,南昌大学,2014.
76 Sun H. Zr-doped magadilte porous clay heterostructures catalysts: Synthesis and catalytic property magadiite, Master’s Thesis, Beijing University of Chemical Technology, China,2014(in Chinese).
孙環.锆掺杂多孔粘土异质结构催化剂的合成及催化性能.硕士学位论文,北京化工大学,2014.
77 Li G W. Studies on the synthesis of layered silicate magadiite(md) and a GbR/md composite photocatalysts. Master’s Thesis, Beijing University of Chemical Technology, China,2014(in Chinese).
李光文.层状硅酸盐MD的合成及AgBr/MD复合光催化剂研究.硕士学位论文,北京化工大学,2014.
78 Ge M L, Wang Y W, Chen M. China Environmental Science,2015,35(7),2065(in Chinese).
戈明亮,王雁武,陈萌.中国环境科学,2015,35(7),2065.
79 Mokhtar A, Djelad A, Boudia A. Journal of Porous Materials,2017,24,1627.
80 Lim W T, Jang J H, Park N Y. Journal of Materials Chemistry A,2017,5,4144.
81 Natthawut H, Sareeya B, Makoto O. Langmuir,2017,33,9558.
82 Guerra D L, Ferrreira J, Pereira M J, et al. Clays and Clay Minerals,2010,58(3),327.
83 Pinto A A, Guerra D L, Aroldi C. In: 11th International Conference on Advance Materials. Rio de Janeiro Brasil,2009.
84 Guerra D L, Pinto A A, Souza J A, et al. Journal of Hazardous Mate-rials,2009,166,1550.
85 Guerra D L, Pinto A A, Claudio A, et al. Journal of Solid State Chemistry,2008,181,3374.
86 Mokhtar M. Materials,2017,10,760.
87 Royer B, Cardoso N F, Lima E C,et al. Separation Science and Technology,2010,45,129.
88 Vieira R B, Pastore H O. Environment Science & Technology,2014,48,2472.
89 Moura H M, Pastore H O. Dalton Transactions,2014,43,10471.
90 Li C P, Huang C M, Hsieh M T, et al. Journal of Polymer Science: Part A,2005,43,534.
91 Wang D Y, Jiang D D, Pabst J, et al. Polymer Engineering and Science,2004,44,1122.
92 Wang Z, Pinnavaia T J. Chemistry of Material,1998,10,1820.
93 Mariappan T, Yi D Q, Chakraborty A. Journal of Fire Science,2014,32(4),346.
94 Costache M C, Heidecker M J, Manias E, et al. Polymers for Advanced Technologies,2006,17,764.
95 Isoda K, Kuroda K. Chemistry of Materials,2005,17,3717.
96 Mao Q H, Schleidt S, Zimmermann H. Macromolecular Chemistry and Physics,2007,208,2145.
97 Wang Y. Synthesis of magadiite and recrystallization of it into zeolites. Ph.D. Thesis, Dalian University of Technology, China,2012(in Chinese).
王瑜.Magadiite的合成及其转晶制备沸石分子筛研究.博士学位论文,大连理工大学,2010.
98 Xu L L. Efficient synthesis of green zeolite in present of seed crystal. Master’s Thesis, East China Normal University, China,2013(in Chinese).
徐浪浪.晶种法沸石分子筛的髙效绿色合成及其形成机理的深入认识.硕士学位论文,华东师范大学,2013.
99 Selvam T, Mabande G T P, Schwieger W, et al. Catalysis Letters,2004,94,1.
100 Zones S I, Franeiseo S. US patent, US 4676958,1987.
101 PálBorbély G, Beyer H K, Kiyozumi Y, et al. Microporous Materials,1997,11,45.
102 Mihályi R M, Pál-Borbély G, Beyer H K, et al. Microporous and Mesoporous Materials,2007,98,132.
103 Zhang C. Studies on synthesis, characterization and catalytic application of porous magadiite-based heterostructures. Master’s Thesis, Beijing University of Chemical Technology, China,2012(in Chinese).
张丛.新型多孔magadiite基异质结构的合成、表征及应用.硕士学位论文,北京化工大学,2012.
104 Park K W, Jung J H, Seo H J, et al. Microporous and Mesoporous Materials,2009,121,219.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[12] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[13] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[14] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
[15] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed