Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 954-959    https://doi.org/10.11896/cldb.201906008
  无机非金属及其复合材料 |
还原氧化石墨烯高效吸附双酚F的机理研究
张迪1, 杨迪1, 徐翠2, 周日宇3, 李浩1, 李靖1, 王朋1
1 昆明理工大学环境科学与工程学院,昆明 650500
2 山东省潍坊市环境保护局经济开发区分局,潍坊 261000
3 西南科技大学环境与资源学院,绵阳 621010
Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide
ZHANG Di1, YANG Di1, XU Cui2, ZHOU Riyu3, LI Hao1, LI Jing1, WANG Peng1
1 Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming 650500
2 Economic Development Division of Weifang Environmental Protection Bureau, Weifang 261000
3 School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010
下载:  全 文 ( PDF ) ( 1838KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究关注了还原氧化石墨烯(RGO)对内分泌干扰物双酚F(BPF)的高效吸附机理。与同类碳基吸附剂材料GP和GO相比,RGO显示出作为一种高效吸附剂用于去除废水中BPF的巨大潜力。Freundlich模型能够较好地拟合BPF在RGO表面的吸附等温线,这说明BPF在RGO表面可能发生了多层吸附。热力学研究结果表明,BPF在RGO表面吸附是一个自发的吸热过程。溶液pH值从2.0增加到11.0,RGO对BPF的吸附最开始缓慢增加,pH值超过BPF的pKa1后,吸附容量增加到最大值。BPF发生二次解离后,由于静电排斥作用较强,导致其与RGO的结合作用减弱,从而使吸附效率急剧减小。RGO高效吸附BPF的主要机理为π-π相互作用、疏水作用和静电辅助氢键作用,由于溶液pH值不同,导致各种作用的强弱不同,从而使RGO的吸附能力也存在显著差异。本研究为RGO这类石墨烯碳基吸附剂用于去除水环境中具有可解离性的内分泌干扰物提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张迪
杨迪
徐翠
周日宇
李浩
李靖
王朋
关键词:  还原氧化石墨烯  双酚F  多层吸附  静电辅助氢键  静电排斥    
Abstract: The mechanism of highly efficient adsorption of endocrine disruptor bisphenol F (BPF) by reduced graphene oxide (RGO) was investigated in this study. Compared with similar carbonaceous adsorbents (such as GP and GO), RGO exhibit great potential as an efficient adsorbent for removing BPF from waste water. The adsorption isotherm of BPF on the surface of RGO can be well fitted by Freundlich model, which indicated the occurrence of multilayer adsorption of BPF on RGO surface. The results of thermodynamic studies showed that the adsorption of BPF on RGO surface was a spontaneous endothermic process. The adsorption capacity of RGO to BPF increased slowly with the increase of solution pH value from 2.0 to 11.0. After pH exceeded the pKa1 of BPF, there was a rapid raise in the adsorption capacity and interaction affinity until the maximum was achieved. Once the secondary dissociation of BPF occurred, the adsorption capacity and affinity of RGO decreased dramatically, due to the strong electrostatic repulsion. The primary mechanism of highly efficient adsorption of BPF by RGO included π-π interaction, hydrophobic interaction and charge-assisted hydrogen bonding. The different pH value of the solution could lead to significant difference in adsorption capacity of RGO to BPF. This study provided a theoretical basis for the new graphene-based adsorbents used for removing dissociable endocrine disruptors in contaminated water.
Key words:  reduced graphene oxide    bisphenol F    multilayer adsorption    charge-assisted hydrogen bonding    electrostatic repulsion
                    发布日期:  2019-04-03
ZTFLH:  TB34  
基金资助: 国家自然科学基金(41663014;41303093);云南省中青年学术和技术带头人后备人才项目(2018HB008);国家建设高水平大学公派研究生项目(201708530253)
作者简介:  张迪,博士,美国University of Massachusetts Amherst博士后,副教授,博士研究生导师,云南省中青年学术和技术带头人后备人才.王朋,2013年6月毕业于昆明理工大学,获得工学硕士学位。
引用本文:    
张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide. Materials Reports, 2019, 33(6): 954-959.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906008  或          http://www.mater-rep.com/CN/Y2019/V33/I6/954
1 Chang H S,Choo K H,Lee B,et al. Journal of Hazardous Materials,2009, 172, 1.
2 Hu W Y,Shi G B,Hu D P,et al. Molecular and Cellular Endocrinology,2012,354,63.
3 Kim S D,Cho J,Kim I S,et al. Water Research,2007,41,1013.
4 Inoue K,Murayama S,Takeba K,et al. Journal of Food Composition and Analysis,2003,16,497.
5 Rhind S,Kyle C,Kerr C,et al. Science of the Total Environment,2011,409,3850.
6 Cabaton N,Dumont C,Severin I,et al. Toxicology,2009,255,15.
7 Colborn T,Vom Saal F S,Soto A M. Environmental Health Perspectives,1993,101,378.
8 Rasier G,Toppari J,Parent A S,et al. Molecular and Cellular Endocrino-logy,2006,254,187.
9 Yamazaki E,Yamashita N,Taniyasu S,et al. Ecotoxicology and Environmental Safety,2015,122,565.
10 Pan B,Lin D,Mashayekhi H,et al. Environmental Science & Technology,2008,42,5480.
11 Liu G,Ma J,Li X,et al. Journal of Hazardous Materials,2009,164,1275.
12 Esplugas S,Bila D M,Krause L G T,et al. Journal of Hazardous Mate-rials,2007,149,631.
13 Wang R,Ren D,Xia S,et al. Journal of Hazardous Materials,2009,169,926.
14 El-Naas M H,Al-Muhtaseb S A,Makhlouf S. Journal of Hazardous Materials,2009,164,720.
15 Hou J,Dong G,Lu B,et al. Bioresource Technology,2014,169,475.
16 Zhang L,Pan F,Liu X,et al. Chemical Engineering Journal,2013,218,238.
17 Deng X,Lü L,Li H,et al. Journal of Hazardous Materials,2010,183,923.
18 Liu T,Li Y,Du Q,et al. Colloids and Surfaces B: Biointerfaces,2012,90,197.
19 Ramesha G,Kumara A V,Muralidhara H,et al. Journal of Colloid and Interface Science,2011,361,270.
20 Zhu J,Wei S,Gu H,et al. Environmental Science & Technology,2011,46,977.
21 Stankovich S,Dikin D A,Dommett G H,et al. Nature,2006,442,282.
22 Zhou X,Huang X,Qi X,et al. The Journal of Physical Chemistry C,2009,113,10842.
23 Fan X,Peng W,Li Y,et al. Advanced Materials,2008,20,4490.
24 Liu P,Huang Y,Wang L. Materials Letters,2013,91,125.
25 Park S,An J,Potts J R,et al. Carbon,2011,49,3019.
26 Zhu C,Guo S,Fang Y,et al. ACS Nano,2010,4,2429.
27 Chen H,Müller M B,Gilmore K J,et al. Advanced Materials,2008,20,3557.
28 Wang X,Zhi L,Müllen K. Nano Letters,2008,8,323.
29 Pan B,Xing B. Journal of Soils and Sediments,2010,10,838.
30 Meyer J C,Geim A K,Katsnelson M I,et al. Nature,2007,446,60.
31 Lee C,Wei X,Kysar J W,et al. Science,2008,321,385.
32 Kuo C Y. Desalination,2009,249,976.
33 Li Y,Zhang P,Du Q,et al. Journal of Colloid and Interface Science,2011,363,348.
34 Jesus A L,Redinha J. The Journal of Physical Chemistry A,2011,115,14069.
35 Ni J,Pignatello J J,Xing B. Environmental Science & Technology,2011,45,9240.
36 Li X,Pignatello J J,Wang Y,et al. Environmental Science & Technology,2013,47,8334.
37 Bautista-Toledo I,Ferro-Garcia M,Rivera-Utrilla J,et al. Environmental Science & Technology,2005,39,6246.
38 Wang X L,Shu L,Wang Y Q,et al. Environmental Science & Technology,2011,45,9276.
39 Pan B,Xing B S. Environmental Science & Technology,2008,42,9005.
40 Zhang D,Pan B,Wu M,et al. Environmental Pollution,2012,160,178.
[1] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[2] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[3] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[4] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[5] 杨绍斌,张琴,沈丁,董伟,刘超. 滴加速率对TiO2/RGO复合材料结构和储钠性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 1-5.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed